Suppr超能文献

使用Mask-RCNN在吞咽视频荧光图像中进行自动团注检测。

Automated Bolus Detection in Videofluoroscopic Images of Swallowing Using Mask-RCNN.

作者信息

Caliskan Handenur, Mahoney Amanda S, Coyle James L, Sejdic Ervin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2173-2177. doi: 10.1109/EMBC44109.2020.9176664.

Abstract

Tracking a liquid or food bolus in videofluoroscopic images during X-ray based diagnostic swallowing examinations is a dominant clinical approach to assess human swallowing function during oral, pharyngeal and esophageal stages of swallowing. This tracking represents a highly challenging problem for clinicians as swallowing is a rapid action. Therefore, we developed a computer-aided method to automate bolus detection and tracking in order to alleviate issues associated with human factors. Specifically, we applied a stateof-the-art deep learning model called Mask-RCNN to detect and segment the bolus in videofluoroscopic image sequences. We trained the algorithm with 450 swallow videos and evaluated with an independent dataset of 50 videos. The algorithm was able to detect and segment the bolus with a mean average precision of 0.49 and an intersection of union of 0.71. The proposed method indicated robust detection results that can help to improve the speed and accuracy of a clinical decisionmaking process.

摘要

在基于X射线的诊断性吞咽检查中,在视频荧光透视图像中追踪液体或食物团块是评估人类吞咽过程中口腔、咽部和食管阶段吞咽功能的主要临床方法。由于吞咽是一个快速动作,这种追踪对临床医生来说是一个极具挑战性的问题。因此,我们开发了一种计算机辅助方法来自动检测和追踪食团,以缓解与人为因素相关的问题。具体来说,我们应用了一种名为Mask-RCNN的先进深度学习模型来检测和分割视频荧光透视图像序列中的食团。我们用450个吞咽视频对该算法进行了训练,并用一个包含50个视频的独立数据集进行了评估。该算法能够以0.49的平均精度和0.71的交并比检测和分割食团。所提出的方法显示出稳健的检测结果,有助于提高临床决策过程的速度和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验