Suppr超能文献

时间对视频透视吞咽研究中咽期自动检测的影响。

The effect of time on the automated detection of the pharyngeal phase in videofluoroscopic swallowing studies.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3435-3438. doi: 10.1109/EMBC46164.2021.9629562.

Abstract

Convolutional Neural Networks (CNNs) have recently been proposed to automatically detect the pharyngeal phase in videofluoroscopic swallowing studies (VFSS). However, there is a lack of consensus regarding the best algorithmic strategy to adopt for segmenting this important yet rapid phase of the swallow. Moreover, additional information is needed to understand how small the detection error should be, in view of translating this approach for use in clinical practice. In this manuscript we compare multiple CNN-based algorithms for detecting the pharyngeal phase in VFSS bolus-level clips, specifically looking at 2DCNN and 3DCNN approaches with different temporal windows as input. Our results showed that a 2DCNN analysis on 3-frame windows outperformed both frame-by-frame approaches and 3DCNNs. We also demonstrated that the detection accuracy of the pharyngeal phase is very close to the clinical gold standard (i.e., trained clinical raters). These results demonstrate the feasibility of deep learning-based algorithms for developing intelligent approaches to automatically support clinicians in the analysis of VFSS data.Clinical relevance- Accurate and reliable segmentation of the pharyngeal phase will support clinicians by reducing the time needed for rating VFSS data. Moreover, automatic detection of this phase can be seen as a foundation for building novel and intelligent approaches to detect clinical features of interest in VFSS, such as the presence of penetration-aspiration.

摘要

卷积神经网络 (CNNs) 最近被提出用于自动检测视频透视吞咽研究 (VFSS) 中的咽期。然而,在采用何种最佳算法策略来分割这个吞咽过程中重要而快速的阶段方面,尚未达成共识。此外,还需要额外的信息来了解应该将检测误差控制到多小,以便将这种方法转化为临床实践。在本文中,我们比较了多种基于 CNN 的算法,用于检测 VFSS 食团级剪辑中的咽期,特别是针对 2DCNN 和 3DCNN 方法,以不同的时间窗口作为输入。我们的结果表明,3 帧窗口的 2DCNN 分析优于逐帧方法和 3DCNN。我们还证明了咽期的检测准确性非常接近临床金标准(即经过训练的临床评估者)。这些结果表明,基于深度学习的算法可用于开发智能方法,以自动支持临床医生分析 VFSS 数据。临床相关性- 咽期的准确可靠分割将通过减少评估 VFSS 数据所需的时间来支持临床医生。此外,该阶段的自动检测可以被视为在 VFSS 中检测感兴趣的临床特征(例如渗透-吸入)的新型智能方法的基础。

相似文献

4
Quantitative video-fluoroscopic analysis of swallowing in infants.婴儿吞咽的定量视频荧光分析。
Int J Pediatr Otorhinolaryngol. 2020 Nov;138:110315. doi: 10.1016/j.ijporl.2020.110315. Epub 2020 Aug 18.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验