Suppr超能文献

基于深度学习卷积神经网络的全景 X 光骨质疏松筛查支持系统。

Osteoporosis screening support system from panoramic radiographs using deep learning by convolutional neural network.

机构信息

Department of Oral and Maxillofacial Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan.

Department of Oral and Maxillofacial Radiology, Matsumoto Dental University, Nagano, Japan.

出版信息

Dentomaxillofac Radiol. 2022 Sep 1;51(6):20220135. doi: 10.1259/dmfr.20220135. Epub 2022 Aug 2.

Abstract

OBJECTIVES

This study was performed to develop computer-aided screening systems that could predict osteoporosis. The systems were constructed using panoramic radiographs of women aged ≥ 50 years through three types of deep convolutional neural networks (CNNs): Alexnet, VGG-16, and GoogLeNet; the performances of the constructed systems were evaluated.

METHODS

One oral radiologist classified 1500 panoramic radiographs into three types. In C1, the endosteal margin of the cortex was smooth and sharp, whereas porosities were observed in C2 and C3. The risks of osteoporosis were higher in C2 and C3 than in C1; C3 had the highest risk. This information was included with the images as training data; three CNNs were transfer trained. Using each trained CNN, the diagnostic accuracy was assessed using panoramic radiographs and bone mineral density inspection findings in the lumbar spine and femoral neck of 100 additional patients.

RESULTS

All CNNs exhibited relatively good agreement with the oral radiologist's judgement (86.0%-90.7%). The predictive results of the three systems for osteoporosis of the lumbar spine showed sensitivities of 78.3%-82.6%, specificities of 71.4%-79.2%, and accuracies of 74.0%-79.0%. The predictive results for osteoporosis of the femoral neck showed sensitivities of 80.0%-86.7%, specificities of 67.1%-74.1%, and accuracies of 70.0%-75.0%.

CONCLUSIONS

The constructed systems were generally more accurate than the previously developed conventional system. The new systems may facilitate osteoporosis prediction and prevent subsequent fractures by encouraging patients with suspected osteoporosis to undergo further inspections (., dual-energy X-ray absorptiometry) and treatment.

摘要

目的

本研究旨在开发计算机辅助筛查系统,以预测骨质疏松症。该系统通过三种类型的深度卷积神经网络(CNN):Alexnet、VGG-16 和 GoogLeNet,使用≥50 岁女性的全景片构建;评估构建系统的性能。

方法

一名口腔放射科医生将 1500 张全景片分为三类。在 C1 中,皮质的内骨缘平滑且锐利,而 C2 和 C3 中则观察到孔隙。C2 和 C3 的骨质疏松症风险高于 C1;C3 的风险最高。将这些信息与图像一起作为训练数据;三种 CNN 进行转移训练。使用每个训练过的 CNN,通过 100 名额外患者的全景片和腰椎及股骨颈的骨密度检查结果评估诊断准确性。

结果

所有 CNN 与口腔放射科医生的判断(86.0%-90.7%)都显示出相对较好的一致性。三个系统对腰椎骨质疏松症的预测结果显示,敏感性为 78.3%-82.6%,特异性为 71.4%-79.2%,准确性为 74.0%-79.0%。对股骨颈骨质疏松症的预测结果显示,敏感性为 80.0%-86.7%,特异性为 67.1%-74.1%,准确性为 70.0%-75.0%。

结论

构建的系统总体上比以前开发的传统系统更准确。新系统可以通过鼓励疑似骨质疏松症患者进行进一步检查(例如,双能 X 线吸收法)和治疗,促进骨质疏松症的预测和预防随后的骨折。

相似文献

1
Osteoporosis screening support system from panoramic radiographs using deep learning by convolutional neural network.
Dentomaxillofac Radiol. 2022 Sep 1;51(6):20220135. doi: 10.1259/dmfr.20220135. Epub 2022 Aug 2.
2
Comparison of five convolutional neural networks for predicting osteoporosis based on mandibular cortical index on panoramic radiographs.
Dentomaxillofac Radiol. 2022 Sep 1;51(6):20220108. doi: 10.1259/dmfr.20220108. Epub 2022 Jul 6.
5
8
Quantitative level determination of fixed restorations on panoramic radiographs using deep learning.
Int J Comput Dent. 2023 Nov 28;26(4):285-299. doi: 10.3290/j.ijcd.b3840521.

引用本文的文献

1
U-net-based segmentation of foreign bodies and ghost images in panoramic radiographs.
Oral Radiol. 2025 Sep 17. doi: 10.1007/s11282-025-00862-x.
2
Reply on "Dental panoramic radiographs by dental students versus artificial intelligence".
Osteoporos Sarcopenia. 2025 Mar;11(1):30. doi: 10.1016/j.afos.2025.02.003. Epub 2025 Mar 7.
6
Application of Artificial Intelligence Methods on Osteoporosis Classification with Radiographs-A Systematic Review.
Bioengineering (Basel). 2024 May 12;11(5):484. doi: 10.3390/bioengineering11050484.
7
Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans.
Tomography. 2023 Sep 22;9(5):1772-1786. doi: 10.3390/tomography9050141.
8
Osteoporosis Screening Using Dental Panoramic Radiographs and Age at Menarche.
Diagnostics (Basel). 2023 Feb 24;13(5):881. doi: 10.3390/diagnostics13050881.
9
Application of Deep Convolutional Neural Networks in the Diagnosis of Osteoporosis.
Sensors (Basel). 2022 Oct 26;22(21):8189. doi: 10.3390/s22218189.

本文引用的文献

2
A review on deep learning in medical image analysis.
Int J Multimed Inf Retr. 2022;11(1):19-38. doi: 10.1007/s13735-021-00218-1. Epub 2021 Sep 4.
4
Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs.
Dentomaxillofac Radiol. 2021 Jan 1;50(1):20200171. doi: 10.1259/dmfr.20200171. Epub 2020 Jul 15.
5
Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Sep;130(3):336-343. doi: 10.1016/j.oooo.2020.04.005. Epub 2020 May 20.
6
Automatic computation of mandibular indices in dental panoramic radiographs for early osteoporosis detection.
Artif Intell Med. 2020 Mar;103:101816. doi: 10.1016/j.artmed.2020.101816. Epub 2020 Feb 5.
9
Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2019 Oct;128(4):424-430. doi: 10.1016/j.oooo.2019.05.014. Epub 2019 Jun 6.
10
Convolutional Neural Networks for Radiologic Images: A Radiologist's Guide.
Radiology. 2019 Mar;290(3):590-606. doi: 10.1148/radiol.2018180547. Epub 2019 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验