Suppr超能文献

使用计算流体动力学对主动脉缩窄处收缩压峰值下降进行无创预测。

Non-invasive Prediction of Peak Systolic Pressure Drop across Coarctation of Aorta using Computational Fluid Dynamics.

作者信息

Aslan Seda, Mass Paige, Loke Yue-Hin, Warburton Linnea, Liu Xiaolong, Hibino Narutoshi, Olivieri Laura, Krieger Axel

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2295-2298. doi: 10.1109/EMBC44109.2020.9176461.

Abstract

This paper proposes a novel method to noninvasively measure the peak systolic pressure difference (PSPD) across coarctation of the aorta for diagnosing the severity of coarctation. Traditional non-invasive estimates of pressure drop from the ultrasound can underestimate the severity and invasive measurements by cardiac catheterization can carry risks for patients. To address the issues, we employ computational fluid dynamics (CFD) computation to accurately predict the PSPD across a coarctation based on cardiac magnetic resonance (CMR) imaging data and cuff pressure measurements from one arm. The boundary conditions of a patient-specific aorta model are specified at the inlet of the ascending aorta by using the time-dependent blood velocity, and the outlets of descending aorta and supra aortic branches by using a 3-element Windkessel model. To estimate the parameters of the Windkessel model, steady flow simulations were performed using the time-averaged flow rates in the ascending aorta, descending aorta, and two of the three supra aortic branches. The mean cuff pressure from one arm was specified at the outlet of one of the supra aortic branches. The CFD predicted PSPDs of 5 patients (n=5) were compared with the invasively measured pressure drops obtained by catheterization. The PSPDs were accurately predicted (mean µ=0.3mmHg, standard deviation σ =4.3mmHg) in coarctation of the aorta using completely non-invasive flow and cuff pressure data. The results of our study indicate that the proposed method could potentially replace invasive measurements for estimating the severity of coarctations.Clinical relevance-Peak systolic pressure drop is an indicator of the severity of coarctation of the aorta. It can be predicted without any additional risks to patients using non-invasive cuff pressure and flow data from CMR.

摘要

本文提出了一种新方法,用于非侵入性测量主动脉缩窄处的收缩压峰值差(PSPD),以诊断缩窄的严重程度。传统的超声非侵入性压力降估计可能会低估严重程度,而心导管插入术的侵入性测量对患者有风险。为了解决这些问题,我们采用计算流体动力学(CFD)计算,基于心脏磁共振(CMR)成像数据和来自一侧手臂的袖带压力测量值,准确预测主动脉缩窄处的PSPD。通过使用随时间变化的血流速度,在升主动脉入口处指定特定患者主动脉模型的边界条件,并使用三元件Windkessel模型在降主动脉和主动脉弓上分支的出口处指定边界条件。为了估计Windkessel模型的参数,使用升主动脉、降主动脉和三个主动脉弓上分支中的两个分支的时间平均流速进行稳态流模拟。在主动脉弓上分支之一的出口处指定来自一侧手臂的平均袖带压力。将5名患者(n = 5)的CFD预测PSPD与通过导管插入术获得的侵入性测量压力降进行比较。使用完全非侵入性的血流和袖带压力数据,在主动脉缩窄中准确预测了PSPD(平均值µ = 0.3mmHg,标准差σ = 4.3mmHg)。我们的研究结果表明,所提出的方法有可能取代侵入性测量来估计缩窄的严重程度。临床相关性——收缩压峰值降是主动脉缩窄严重程度的指标。使用来自CMR的非侵入性袖带压力和血流数据,可以在不对患者造成任何额外风险的情况下进行预测。

相似文献

8
Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.主动脉修复的虚拟规划和个体化移植物设计。
Cardiovasc Eng Technol. 2024 Apr;15(2):123-136. doi: 10.1007/s13239-023-00701-2. Epub 2023 Nov 20.

引用本文的文献

4
Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.主动脉修复的虚拟规划和个体化移植物设计。
Cardiovasc Eng Technol. 2024 Apr;15(2):123-136. doi: 10.1007/s13239-023-00701-2. Epub 2023 Nov 20.

本文引用的文献

4
Diagnosis, imaging and clinical management of aortic coarctation.主动脉缩窄的诊断、影像学检查及临床管理
Heart. 2017 Aug;103(15):1148-1155. doi: 10.1136/heartjnl-2017-311173. Epub 2017 Apr 4.
8
Central blood pressure: current evidence and clinical importance.中心血压:当前证据及临床重要性
Eur Heart J. 2014 Jul;35(26):1719-25. doi: 10.1093/eurheartj/eht565. Epub 2014 Jan 23.
9
Stent placement versus surgery for coarctation of the thoracic aorta.胸主动脉缩窄的支架置入术与外科手术对比
Cochrane Database Syst Rev. 2012 May 16;2012(5):CD008204. doi: 10.1002/14651858.CD008204.pub2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验