Suppr超能文献

用于脑电信号分类的联邦迁移学习

Federated Transfer Learning for EEG Signal Classification.

作者信息

Ju Ce, Gao Dashan, Mane Ravikiran, Tan Ben, Liu Yang, Guan Cuntai

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3040-3045. doi: 10.1109/EMBC44109.2020.9175344.

Abstract

The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.

摘要

深度学习(DL)方法在脑机接口(BCI)领域用于脑电图(EEG)记录分类的成功受到缺乏大型数据集的限制。与EEG信号相关的隐私问题限制了通过合并多个小数据集来构建大型EEG-BCI数据集以联合训练机器学习模型的可能性。因此,在本文中,我们基于联邦学习框架提出了一种用于EEG分类的名为联邦迁移学习(FTL)的新型隐私保护DL架构。该架构使用单次试验协方差矩阵,借助域适应技术从多主体EEG数据中提取共同的判别信息。我们在PhysioNet数据集上评估了所提出架构在二分类运动想象分类中的性能。在避免实际数据共享的情况下,我们的FTL方法在主体自适应分析中实现了2%更高的分类准确率。此外,在没有多主体数据的情况下,我们的架构比其他现有最先进的DL架构提供了6%更高的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验