Ju Ce, Gao Dashan, Mane Ravikiran, Tan Ben, Liu Yang, Guan Cuntai
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3040-3045. doi: 10.1109/EMBC44109.2020.9175344.
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
深度学习(DL)方法在脑机接口(BCI)领域用于脑电图(EEG)记录分类的成功受到缺乏大型数据集的限制。与EEG信号相关的隐私问题限制了通过合并多个小数据集来构建大型EEG-BCI数据集以联合训练机器学习模型的可能性。因此,在本文中,我们基于联邦学习框架提出了一种用于EEG分类的名为联邦迁移学习(FTL)的新型隐私保护DL架构。该架构使用单次试验协方差矩阵,借助域适应技术从多主体EEG数据中提取共同的判别信息。我们在PhysioNet数据集上评估了所提出架构在二分类运动想象分类中的性能。在避免实际数据共享的情况下,我们的FTL方法在主体自适应分析中实现了2%更高的分类准确率。此外,在没有多主体数据的情况下,我们的架构比其他现有最先进的DL架构提供了6%更高的准确率。