Suppr超能文献

面向支持6G的安全通信系统的联邦学习:全面综述。

Federated learning for 6G-enabled secure communication systems: a comprehensive survey.

作者信息

Sirohi Deepika, Kumar Neeraj, Rana Prashant Singh, Tanwar Sudeep, Iqbal Rahat, Hijjii Mohammad

机构信息

Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab India.

Department of Electrical and Computer Engineering, Lebanese American University, Beirut, Lebanon.

出版信息

Artif Intell Rev. 2023 Mar 12:1-93. doi: 10.1007/s10462-023-10417-3.

Abstract

Machine learning (ML) and Deep learning (DL) models are popular in many areas, from business, medicine, industries, healthcare, transportation, smart cities, and many more. However, the conventional centralized training techniques may not apply to upcoming distributed applications, which require high accuracy and quick response time. It is mainly due to limited storage and performance bottleneck problems on the centralized servers during the execution of various ML and DL-based models. However, federated learning (FL) is a developing approach to training ML models in a collaborative and distributed manner. It allows the full potential exploitation of these models with unlimited data and distributed computing power. In FL, edge computing devices collaborate to train a global model on their private data and computational power without sharing their private data on the network, thereby offering privacy preservation by default. But the distributed nature of FL faces various challenges related to data heterogeneity, client mobility, scalability, and seamless data aggregation. Moreover, the communication channels, clients, and central servers are also vulnerable to attacks which may give various security threats. Thus, a structured vulnerability and risk assessment are needed to deploy FL successfully in real-life scenarios. Furthermore, the scope of FL is expanding in terms of its application areas, with each area facing different threats. In this paper, we analyze various vulnerabilities present in the FL environment and design a literature survey of possible threats from the perspective of different application areas. Also, we review the most recent defensive algorithms and strategies used to guard against security and privacy threats in those areas. For a systematic coverage of the topic, we considered various applications under four main categories: space, air, ground, and underwater communications. We also compared the proposed methodologies regarding the underlying approach, base model, datasets, evaluation matrices, and achievements. Lastly, various approaches' future directions and existing drawbacks are discussed in detail.

摘要

机器学习(ML)和深度学习(DL)模型在许多领域都很受欢迎,包括商业、医学、工业、医疗保健、交通运输、智慧城市等等。然而,传统的集中式训练技术可能不适用于即将到来的分布式应用,这些应用需要高精度和快速响应时间。这主要是由于在执行各种基于ML和DL的模型时,集中式服务器存在存储有限和性能瓶颈问题。然而,联邦学习(FL)是一种以协作和分布式方式训练ML模型的发展中的方法。它允许利用无限数据和分布式计算能力充分发挥这些模型的潜力。在FL中,边缘计算设备协作在其私有数据和计算能力上训练全局模型,而无需在网络上共享其私有数据,从而默认提供隐私保护。但是,FL的分布式性质面临与数据异构性、客户端移动性、可扩展性和无缝数据聚合相关的各种挑战。此外,通信通道、客户端和中央服务器也容易受到攻击,这可能带来各种安全威胁。因此,需要进行结构化的漏洞和风险评估,以便在实际场景中成功部署FL。此外,FL在其应用领域方面的范围正在扩大,每个领域都面临不同的威胁。在本文中,我们分析了FL环境中存在的各种漏洞,并从不同应用领域的角度设计了对可能威胁的文献综述。此外,我们还回顾了用于防范这些领域中的安全和隐私威胁的最新防御算法和策略。为了系统地涵盖该主题,我们考虑了四个主要类别下的各种应用:空间、空中、地面和水下通信。我们还比较了所提出的方法在基础方法、基础模型、数据集、评估矩阵和成果方面的情况。最后,详细讨论了各种方法的未来方向和现有缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205b/10008151/9a39ac8dd5d4/10462_2023_10417_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验