Suppr超能文献

以自我为中心的视频中手部与物体交互检测在手部受损人群中的可推广性。

Generalizability of Hand-Object Interaction Detection in Egocentric Video across Populations with Hand Impairment.

作者信息

Tsai Meng-Fen, Wang Rosalie H, Zariffa Jose

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3228-3231. doi: 10.1109/EMBC44109.2020.9176154.

Abstract

Stroke survivors often experience unilateral sensorimotor impairment. The restoration of upper limb function is an important determinant of quality of life after stroke. Wearable technologies that can measure hand function at home are needed to assess the impact of new interventions. Egocentric cameras combined with computer vision algorithms have been proposed as a means to capture hand use in unconstrained environments, and have shown promising results in this application for individuals with cervical spinal cord injury (cSCI). The objective of this study was to examine the generalizability of this approach to individuals who have experienced a stroke. An egocentric camera was used to capture the hand use (hand-object interactions) of 6 stroke survivors performing daily tasks in a home simulation laboratory. The interaction detection classifier previously trained on 9 individuals with cSCI was applied to detect hand use in the stroke survivors. The processing pipeline consisted of hand detection, hand segmentation, feature extraction, and interaction detection. The resulting average F1 scores for affected and unaffected hands were 0.66 ± 0.25 and 0.80 ± 0.15, respectively, indicating that the approach is feasible and has the potential to generalize to stroke survivors. Using stroke-specific training data may further increase the accuracy obtained for the affected hand.

摘要

中风幸存者常常经历单侧感觉运动功能障碍。上肢功能的恢复是中风后生活质量的一个重要决定因素。需要能够在家中测量手部功能的可穿戴技术来评估新干预措施的影响。以自我为中心的摄像头与计算机视觉算法相结合,已被提议作为一种在无约束环境中捕捉手部使用情况的方法,并且在该应用中已对颈脊髓损伤(cSCI)个体显示出有前景的结果。本研究的目的是检验这种方法对中风个体的通用性。使用一个以自我为中心的摄像头来捕捉6名中风幸存者在家庭模拟实验室中执行日常任务时的手部使用情况(手与物体的交互)。先前在9名cSCI个体上训练的交互检测分类器被应用于检测中风幸存者的手部使用情况。处理流程包括手部检测、手部分割、特征提取和交互检测。受影响手和未受影响手的平均F1分数分别为0.66±0.25和0.80±0.15,表明该方法是可行的,并且有可能推广到中风幸存者。使用特定于中风的训练数据可能会进一步提高受影响手获得的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验