Suppr超能文献

基于自我中心视频识别脑卒中后手的使用和手的角色

Identifying Hand Use and Hand Roles After Stroke Using Egocentric Video.

机构信息

KITE, Toronto Rehabilitation Institute, University Health NetworkTorontoONM5G 2A2Canada.

Institute of Biomedical Engineering, University of TorontoTorontoONM5S 1A1Canada.

出版信息

IEEE J Transl Eng Health Med. 2021 Apr 9;9:2100510. doi: 10.1109/JTEHM.2021.3072347. eCollection 2021.

Abstract

OBJECTIVE

Upper limb (UL) impairment impacts quality of life, but is common after stroke. UL function evaluated in the clinic may not reflect use in activities of daily living (ADLs) after stroke, and current approaches for assessment at home rely on self-report and lack details about hand function. Wrist-worn accelerometers have been applied to capture UL use, but also fail to reveal details of hand function. In response, a wearable system is proposed consisting of egocentric cameras combined with computer vision approaches, in order to identify hand use (hand-object interactions) and the role of the more-affected hand (as stabilizer or manipulator) in unconstrained environments.

METHODS

Nine stroke survivors recorded their performance of ADLs in a home simulation laboratory using an egocentric camera. Motion, hand shape, colour, and hand size change features were generated and fed into random forest classifiers to detect hand use and classify hand roles. Leave-one-subject-out cross-validation (LOSOCV) and leave-one-task-out cross-validation (LOTOCV) were used to evaluate the robustness of the algorithms.

RESULTS

LOSOCV and LOTOCV F1-scores for more-affected hand use were 0.64 ± 0.24 and 0.76 ± 0.23, respectively. For less-affected hands, LOSOCV and LOTOCV F1-scores were 0.72 ± 0.20 and 0.82 ± 0.22. F1-scores for hand role classification were 0.70 ± 0.19 and 0.68 ± 0.23 in the more-affected hand for LOSOCV and LOTOCV, respectively, and 0.59 ± 0.23 and 0.65 ± 0.28 in the less-affected hand.

CONCLUSION

The results demonstrate the feasibility of predicting hand use and the hand roles of stroke survivors from egocentric videos.

摘要

目的

上肢(UL)功能障碍会影响生活质量,但在中风后很常见。在诊所评估 UL 功能可能无法反映中风后日常生活活动(ADL)的使用情况,而当前在家中进行评估的方法依赖于自我报告,并且缺乏有关手部功能的详细信息。腕戴式加速度计已用于捕获 UL 使用情况,但也无法揭示手部功能的详细信息。针对这一问题,提出了一种由自拍摄像机和计算机视觉方法组成的可穿戴系统,以便在不受限制的环境中识别手部使用情况(手-物相互作用)和较严重受损手的作用(作为稳定器或操纵器)。

方法

9 名中风幸存者在家庭模拟实验室中使用自拍摄像机记录 ADL 表现。生成运动、手形、颜色和手大小变化特征,并将其输入随机森林分类器以检测手部使用情况并对手部角色进行分类。采用留一受试者交叉验证(LOSOCV)和留一任务交叉验证(LOTOCV)评估算法的稳健性。

结果

较严重受损手的使用情况的 LOSOCV 和 LOTOCV F1 分数分别为 0.64 ± 0.24 和 0.76 ± 0.23。对于较轻受损手,LOSOCV 和 LOTOCV 的 F1 分数分别为 0.72 ± 0.20 和 0.82 ± 0.22。LOSOCV 和 LOTOCV 中,较严重受损手的手角色分类的 F1 分数分别为 0.70 ± 0.19 和 0.68 ± 0.23,较轻受损手的 F1 分数分别为 0.59 ± 0.23 和 0.65 ± 0.28。

结论

这些结果证明了从自拍摄像视频中预测中风幸存者手部使用情况和手角色的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f4e/8055062/55153919bcec/zarif1ab-3072347.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验