Suppr超能文献

使用广义线性模型对用于尖峰变换的卷积神经网络模型进行验证

Validation of a Convolutional Neural Network Model for Spike Transformation Using a Generalized Linear Model.

作者信息

Moore Bryan J, Berger Theodore, Song Dong

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3236-3239. doi: 10.1109/EMBC44109.2020.9176458.

Abstract

Identification of causal relationships of neural activity is one of the most important problems in neuroscience and neural engineering. We show that a novel deep learning approach using a convolutional neural network to model output neural spike activity from input neural spike activity is able to achieve high correlation between the predicted probability of spiking in the output neuron and the true probability of spiking in the output neuron for data generated with a generalized linear model. The convolutional neural network is also able to recover the true model variables (kernels) used to generate the probability of spiking in the output neuron. Based on the convolutional neural network model's validation via a generalized linear model, future work will include validation with non-linear models that use higher-order kernels.

摘要

识别神经活动的因果关系是神经科学和神经工程中最重要的问题之一。我们表明,一种使用卷积神经网络从输入神经脉冲活动对输出神经脉冲活动进行建模的新型深度学习方法,对于由广义线性模型生成的数据,能够在输出神经元中尖峰发放的预测概率与输出神经元中尖峰发放的真实概率之间实现高度相关性。卷积神经网络还能够恢复用于生成输出神经元中尖峰发放概率的真实模型变量(内核)。基于通过广义线性模型对卷积神经网络模型的验证,未来的工作将包括使用高阶内核的非线性模型进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验