Moore Bryan J, Berger Theodore, Song Dong
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3236-3239. doi: 10.1109/EMBC44109.2020.9176458.
Identification of causal relationships of neural activity is one of the most important problems in neuroscience and neural engineering. We show that a novel deep learning approach using a convolutional neural network to model output neural spike activity from input neural spike activity is able to achieve high correlation between the predicted probability of spiking in the output neuron and the true probability of spiking in the output neuron for data generated with a generalized linear model. The convolutional neural network is also able to recover the true model variables (kernels) used to generate the probability of spiking in the output neuron. Based on the convolutional neural network model's validation via a generalized linear model, future work will include validation with non-linear models that use higher-order kernels.
识别神经活动的因果关系是神经科学和神经工程中最重要的问题之一。我们表明,一种使用卷积神经网络从输入神经脉冲活动对输出神经脉冲活动进行建模的新型深度学习方法,对于由广义线性模型生成的数据,能够在输出神经元中尖峰发放的预测概率与输出神经元中尖峰发放的真实概率之间实现高度相关性。卷积神经网络还能够恢复用于生成输出神经元中尖峰发放概率的真实模型变量(内核)。基于通过广义线性模型对卷积神经网络模型的验证,未来的工作将包括使用高阶内核的非线性模型进行验证。