Suppr超能文献

基于深度学习利用光学相干断层扫描(OCT)图像预测抗血管内皮生长因子(VEGF)注射疗效的初步研究

A Preliminary Study of Predicting Effectiveness of Anti-VEGF Injection Using OCT Images Based on Deep Learning.

作者信息

Feng Dehua, Chen Xi, Zhou Zhiguo, Liu Haotian, Wang Yanfen, Bai Ling, Zhang Shu, Mou Xuanqin

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5428-5431. doi: 10.1109/EMBC44109.2020.9176743.

Abstract

Deep learning based radiomics have made great progress such as CNN based diagnosis and U-Net based segmentation. However, the prediction of drug effectiveness based on deep learning has fewer studies. Choroidal neovascularization (CNV) and cystoid macular edema (CME) are the diseases often leading to a sudden onset but progressive decline in central vision. And the curative treatment using anti-vascular endothelial growth factor (anti-VEGF) may not be effective for some patients. Therefore, the prediction of the effectiveness of anti-VEGF for patients is important. With the development of Convolutional Neural Networks (CNNs) coupled with transfer learning, medical image classifications have achieved great success. We used a method based on transfer learning to automatically predict the effectiveness of anti-VEGF by Optical Coherence tomography (OCT) images before giving medication. The method consists of image preprocessing, data augmentation and CNN-based transfer learning, the prediction AUC can be over 0.8. We also made a comparison study of using lesion region images and full OCT images on this task. Experiments shows that using the full OCT images can obtain better performance. Different deep neural networks such as AlexNet, VGG-16, GooLeNet and ResNet-50 were compared, and the modified ResNet-50 is more suitable for predicting the effectiveness of anti-VEGF.Clinical Relevance - This prediction model can give an estimation of whether anti-VEGF is effective for patients with CNV or CME, which can help ophthalmologists make treatment plan.

摘要

基于深度学习的放射组学已经取得了很大进展,如基于卷积神经网络(CNN)的诊断和基于U-Net的分割。然而,基于深度学习的药物疗效预测研究较少。脉络膜新生血管(CNV)和黄斑囊样水肿(CME)是常导致中心视力突然发病但逐渐下降的疾病。并且使用抗血管内皮生长因子(anti-VEGF)的治疗方法可能对某些患者无效。因此,预测anti-VEGF对患者的疗效很重要。随着卷积神经网络(CNN)与迁移学习的发展,医学图像分类取得了巨大成功。我们使用一种基于迁移学习的方法,在给药前通过光学相干断层扫描(OCT)图像自动预测anti-VEGF的疗效。该方法包括图像预处理、数据增强和基于CNN的迁移学习,预测的AUC可以超过0.8。我们还针对此任务对使用病变区域图像和完整OCT图像进行了比较研究。实验表明,使用完整的OCT图像可以获得更好的性能。比较了不同的深度神经网络,如AlexNet、VGG-16、GooLeNet和ResNet-50,改进后的ResNet-50更适合预测anti-VEGF的疗效。临床相关性——该预测模型可以估计anti-VEGF对CNV或CME患者是否有效,这有助于眼科医生制定治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验