School of Nursing, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
Superintendent Office, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
BMC Bioinformatics. 2021 Nov 8;22(Suppl 5):99. doi: 10.1186/s12859-021-04001-1.
To diagnose key pathologies of age-related macular degeneration (AMD) and diabetic macular edema (DME) quickly and accurately, researchers attempted to develop effective artificial intelligence methods by using medical images.
A convolutional neural network (CNN) with transfer learning capability is proposed and appropriate hyperparameters are selected for classifying optical coherence tomography (OCT) images of AMD and DME. To perform transfer learning, a pre-trained CNN model is used as the starting point for a new CNN model for solving related problems. The hyperparameters (parameters that have set values before the learning process begins) in this study were algorithm hyperparameters that affect learning speed and quality. During training, different CNN-based models require different algorithm hyperparameters (e.g., optimizer, learning rate, and mini-batch size). Experiments showed that, after transfer learning, the CNN models (8-layer Alexnet, 22-layer Googlenet, 16-layer VGG, 19-layer VGG, 18-layer Resnet, 50-layer Resnet, and a 101-layer Resnet) successfully classified OCT images of AMD and DME.
The experimental results further showed that, after transfer learning, the VGG19, Resnet101, and Resnet50 models with appropriate algorithm hyperparameters had excellent capability and performance in classifying OCT images of AMD and DME.
为了快速准确地诊断与年龄相关的黄斑变性(AMD)和糖尿病性黄斑水肿(DME)等关键病理学,研究人员尝试通过使用医学图像来开发有效的人工智能方法。
提出了一种具有迁移学习能力的卷积神经网络(CNN),并为 AMD 和 DME 的光学相干断层扫描(OCT)图像分类选择了适当的超参数。为了进行迁移学习,使用预先训练的 CNN 模型作为解决相关问题的新 CNN 模型的起点。本研究中的超参数(学习过程开始之前设置的值的参数)是影响学习速度和质量的算法超参数。在训练过程中,不同的基于 CNN 的模型需要不同的算法超参数(例如,优化器、学习率和小批量大小)。实验表明,经过迁移学习后,CNN 模型(8 层 Alexnet、22 层 Googlenet、16 层 VGG、19 层 VGG、18 层 Resnet、50 层 Resnet 和 101 层 Resnet)成功地对 AMD 和 DME 的 OCT 图像进行了分类。
实验结果进一步表明,经过迁移学习后,具有适当算法超参数的 VGG19、Resnet101 和 Resnet50 模型在 AMD 和 DME 的 OCT 图像分类方面具有出色的能力和性能。