Suppr超能文献

Unannounced Meal Detection for Artificial Pancreas Systems Using Extended Isolation Forest.

作者信息

Zheng Fei, Bonnet Stephane, Villeneuve Emma, Doron Maeva, Lepecq Aurore, Forbes Florence

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5892-5895. doi: 10.1109/EMBC44109.2020.9176856.

Abstract

This study aims at developing an unannounced meal detection method for artificial pancreas, based on a recent extension of Isolation Forest. The proposed method makes use of features accounting for individual Continuous Glucose Monitoring (CGM) profiles and benefits from a two-threshold decision rule detection. The advantage of using Extended Isolation Forest (EIF) instead of the standard one is supported by experiments on data from virtual diabetic patients, showing good detection accuracy with acceptable detection delays.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验