Suppr超能文献

人工胰腺:在无进餐通知情况下评估ARG算法

Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement.

作者信息

Fushimi Emilia, Colmegna Patricio, De Battista Hernán, Garelli Fabricio, Sánchez-Peña Ricardo

机构信息

Grupo de Control Aplicado (GCA), Instituto LEICI (UNLP-CONICET), Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina.

出版信息

J Diabetes Sci Technol. 2019 Nov;13(6):1035-1043. doi: 10.1177/1932296819864585. Epub 2019 Jul 24.

Abstract

BACKGROUND

Either under standard basal-bolus treatment or hybrid closed-loop control, subjects with type 1 diabetes are required to count carbohydrates (CHOs). However, CHO counting is not only burdensome but also prone to errors. Recently, an artificial pancreas algorithm that does not require premeal insulin boluses-the so-called automatic regulation of glucose (ARG)-was introduced. In its first pilot clinical study, although the exact CHO counting was not required, subjects still needed to announce the meal time and classify the meal size.

METHOD

An automatic switching signal generator (SSG) is proposed in this work to remove the manual mealtime announcement from the control strategy. The SSG is based on a Kalman filter and works with continuous glucose monitoring readings only.

RESULTS

The ARG algorithm with unannounced meals (ARG) was tested under the effect of different types of mixed meals and intrapatient variability, and contrasted with the ARG algorithm with announced meals (ARG). Simulations reveal that, for slow-absorbing meals, the time in the euglycemic range, [70-180] mg/dL, increases using the unannounced strategy (ARG: 78.1 [68.6-80.2]% (median [IQR]) and ARG: 87.8 [84.5-90.6]%), while similar results were found with fast-absorbing meals (ARG: 87.4 [86.0-88.9]% and ARG: 87.6 [86.1-88.8]%). On the other hand, when intrapatient variability is considered, time in euglycemia is also comparable (ARG: 81.4 [75.4-83.5]% and ARG: 80.9 [77.0-85.1]%).

CONCLUSION

results indicate that it is feasible to perform an in vivo evaluation of the ARG algorithm with unannounced meals.

摘要

背景

无论是在标准基础-餐时胰岛素治疗还是混合闭环控制下,1型糖尿病患者都需要计算碳水化合物(CHO)含量。然而,计算CHO含量不仅繁琐,而且容易出错。最近,一种无需餐前大剂量胰岛素的人工胰腺算法——即所谓的葡萄糖自动调节(ARG)算法被引入。在其首次试点临床研究中,尽管不需要精确计算CHO含量,但患者仍需告知用餐时间并对餐量进行分类。

方法

本研究提出了一种自动切换信号发生器(SSG),以从控制策略中去除手动用餐时间告知环节。该SSG基于卡尔曼滤波器,仅与连续血糖监测读数配合使用。

结果

在不同类型混合餐和患者个体差异的影响下,对不告知用餐情况的ARG算法(ARG)进行了测试,并与告知用餐情况的ARG算法(ARG)进行了对比。模拟结果显示,对于吸收缓慢的餐食,采用不告知策略时,血糖正常范围[70-180]mg/dL内的时间增加(ARG:78.1[68.6-80.2]%(中位数[四分位间距]),ARG:87.8[84.5-90.6]%),而对于吸收快速的餐食,也得到了类似结果(ARG:87.4[86.0-88.9]%,ARG:87.6[86.1-88.8]%)。另一方面,考虑患者个体差异时,血糖正常时间也具有可比性(ARG:81.4[75.4-83.5]%,ARG:80.9[77.0-85.1]%)。

结论

结果表明,对不告知用餐情况的ARG算法进行体内评估是可行的。

相似文献

1
Artificial Pancreas: Evaluating the ARG Algorithm Without Meal Announcement.
J Diabetes Sci Technol. 2019 Nov;13(6):1035-1043. doi: 10.1177/1932296819864585. Epub 2019 Jul 24.
2
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
3
Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System.
Diabetes Technol Ther. 2018 Mar;20(3):235-246. doi: 10.1089/dia.2017.0364. Epub 2018 Feb 6.
5
Inpatient trial of an artificial pancreas based on multiple model probabilistic predictive control with repeated large unannounced meals.
Diabetes Technol Ther. 2014 Nov;16(11):728-34. doi: 10.1089/dia.2014.0093. Epub 2014 Sep 26.
6
Artificial Pancreas: Clinical Study in Latin America Without Premeal Insulin Boluses.
J Diabetes Sci Technol. 2018 Sep;12(5):914-925. doi: 10.1177/1932296818786488. Epub 2018 Jul 12.
7
Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system.
Comput Methods Programs Biomed. 2021 Nov;211:106401. doi: 10.1016/j.cmpb.2021.106401. Epub 2021 Sep 13.
8
Unannounced Meal Challenges Using an Advanced Hybrid Closed-Loop System.
Diabetes Technol Ther. 2023 Sep;25(9):579-588. doi: 10.1089/dia.2023.0139.
9
Internal model control based module for the elimination of meal and exercise announcements in hybrid artificial pancreas systems.
Comput Methods Programs Biomed. 2022 Nov;226:107061. doi: 10.1016/j.cmpb.2022.107061. Epub 2022 Aug 8.
10
Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial.
J Diabetes Sci Technol. 2009 Sep 1;3(5):1091-8. doi: 10.1177/193229680900300512.

引用本文的文献

1
Research Gaps, Challenges, and Opportunities in Automated Insulin Delivery Systems.
J Diabetes Sci Technol. 2025 Jul;19(4):937-949. doi: 10.1177/19322968251338754. Epub 2025 Jul 1.
2
An automatic deep reinforcement learning bolus calculator for automated insulin delivery systems.
Sci Rep. 2024 Jul 2;14(1):15245. doi: 10.1038/s41598-024-62912-4.
3
Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.
J Diabetes Sci Technol. 2024 Mar;18(2):318-323. doi: 10.1177/19322968231212205. Epub 2023 Nov 15.
4
First Outpatient Clinical Trial of a Full Closed-Loop Artificial Pancreas System in South America.
J Diabetes Sci Technol. 2023 Jul;17(4):1008-1015. doi: 10.1177/19322968221096162. Epub 2022 May 12.

本文引用的文献

1
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.
2
Artificial Pancreas: Clinical Study in Latin America Without Premeal Insulin Boluses.
J Diabetes Sci Technol. 2018 Sep;12(5):914-925. doi: 10.1177/1932296818786488. Epub 2018 Jul 12.
3
Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care.
N Engl J Med. 2018 Aug 9;379(6):547-556. doi: 10.1056/NEJMoa1805233. Epub 2018 Jun 25.
4
Unannounced Meals in the Artificial Pancreas: Detection Using Continuous Glucose Monitoring.
Sensors (Basel). 2018 Mar 16;18(3):884. doi: 10.3390/s18030884.
6
Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.
Diabetes Technol Ther. 2017 Sep;19(9):527-532. doi: 10.1089/dia.2017.0078. Epub 2017 Aug 2.
10
Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home.
Diabetes Obes Metab. 2016 Jul;18(7):671-7. doi: 10.1111/dom.12663. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验