Suppr超能文献

一种基于混合卷积-多层感知器神经网络的帕金森震颤预测器与估计器的设计

The Design of a Parkinson's Tremor Predictor and Estimator Using a Hybrid Convolutional-Multilayer Perceptron Neural Network.

作者信息

Ibrahim Anas, Zhou Yue, Jenkins Mary E, Luisa Trejos Ana, Naish Michael D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5996-6000. doi: 10.1109/EMBC44109.2020.9176132.

Abstract

Parkinson's Disease (PD) is considered to be the second most common age-related neuroegenerative disorder, and it is estimated that seven to ten million people worldwide have PD. One of the symptoms of PD is tremor, and studies have shown that wearable assistive devices have the potential to assist in suppressing it. However, despite the progress in the development of these devices, their performance is limited by the tremor estimators they use. Thus, a need for a tremor model that helps the wearable assistive devices to increase tremor suppression without impeding voluntary motion remains. In this work, a user-independent and task-independent tremor and voluntary motion detection method based on neural networks is proposed. Inertial measurement units (IMUs) were used to measure acceleration and angular velocity from participants with PD, these data were then used to train the neural network. The achieved estimation percentage accuracy of voluntary motion was 99.0%, and the future prediction percentage accuracy was 97.3%, 93.7%, 91.4% and 90.3% for 10 ms, 20 ms, 50 ms and 100 ms ahead, respectively. The root mean squared error (RMSE) achieved for tremor estimation was an average of 0.00087/s on new unseen data, and the future prediction average RMSE across the different tasks achieved was 0.001/s, 0.002/s, 0.020/s and 0.049/s for 1 ms, 2 ms, 5 ms, and 10 ms ahead, respectively. Therefore, the proposed method shows promise for use in wearable suppression devices.

摘要

帕金森病(PD)被认为是第二常见的与年龄相关的神经退行性疾病,据估计全球有700万至1000万人患有帕金森病。帕金森病的症状之一是震颤,研究表明可穿戴辅助设备有潜力帮助抑制震颤。然而,尽管这些设备的开发取得了进展,但其性能受到所使用的震颤估计器的限制。因此,仍然需要一种震颤模型,以帮助可穿戴辅助设备在不阻碍自主运动的情况下增强震颤抑制效果。在这项工作中,提出了一种基于神经网络的与用户和任务无关的震颤及自主运动检测方法。使用惯性测量单元(IMU)测量帕金森病患者的加速度和角速度,然后将这些数据用于训练神经网络。自主运动的估计准确率达到了99.0%,对于提前10毫秒、20毫秒、50毫秒和100毫秒的未来预测准确率分别为97.3%、93.7%、91.4%和90.3%。在新的未见过的数据上,震颤估计的均方根误差(RMSE)平均为0.00087/s,在不同任务中实现的未来预测平均RMSE对于提前1毫秒、2毫秒、5毫秒和10毫秒分别为0.001/s、0.002/s、0.020/s和0.049/s。因此,所提出的方法在可穿戴抑制设备中的应用显示出了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验