Sunyer-Figueres Mercè, Vázquez Jennifer, Mas Albert, Torija María-Jesús, Beltran Gemma
Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1. 43007 Tarragona, Catalunya, Spain.
Antioxidants (Basel). 2020 Oct 1;9(10):947. doi: 10.3390/antiox9100947.
Melatonin is a ubiquitous indolamine that plays important roles in various aspects of biological processes in mammals. In , melatonin has been reported to exhibit antioxidant properties and to modulate the expression of some genes involved in endogenous defense systems. The aim of this study was to elucidate the role of supplemented melatonin at the transcriptional level in in the presence and absence of oxidative stress. This was achieved by exposing yeast cells pretreated with different melatonin concentrations to hydrogen peroxide and assessing the entry of melatonin into the cell and the yeast response at the transcriptional level (by microarray and qPCR analyses) and the physiological level (by analyzing changes in the lipid composition and mitochondrial activity). We found that exogenous melatonin crossed cellular membranes at nanomolar concentrations and modulated the expression of many genes, mainly downregulating the expression of mitochondrial genes in the absence of oxidative stress, triggering a hypoxia-like response, and upregulating them under stress, mainly the cytochrome complex and electron transport chain. Other categories that were enriched by the effect of melatonin were related to transport, antioxidant activity, signaling, and carbohydrate and lipid metabolism. The overall results suggest that melatonin is able to reprogram the cellular machinery to achieve tolerance to oxidative stress.
褪黑素是一种广泛存在的吲哚胺,在哺乳动物生物过程的各个方面发挥着重要作用。在[具体研究中],据报道褪黑素具有抗氧化特性,并能调节一些参与内源性防御系统的基因表达。本研究的目的是阐明在存在和不存在氧化应激的情况下,补充褪黑素在[具体生物体]转录水平上的作用。这是通过将用不同浓度褪黑素预处理的酵母细胞暴露于过氧化氢,并评估褪黑素进入细胞的情况以及酵母在转录水平(通过微阵列和qPCR分析)和生理水平(通过分析脂质组成和线粒体活性的变化)的反应来实现的。我们发现,外源性褪黑素在纳摩尔浓度下穿过细胞膜,并调节许多基因的表达,主要是在没有氧化应激的情况下下调线粒体基因的表达,引发类似缺氧的反应,而在应激条件下上调这些基因的表达,主要是细胞色素复合物和电子传递链。受褪黑素影响而富集的其他类别与运输(转运)、抗氧化活性、信号传导以及碳水化合物和脂质代谢有关。总体结果表明,褪黑素能够重新编程细胞机制以实现对氧化应激的耐受性。
原文中部分内容缺失,已用[具体研究中]、[具体生物体]、[转运]等进行标注,翻译时需根据实际完整内容准确翻译。