Galatopoulos Fedros, Papadas Ioannis T, Ioakeimidis Apostolos, Eleftheriou Polyvios, Choulis Stelios A
Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3603 Limassol, Cyprus.
Nanomaterials (Basel). 2020 Oct 1;10(10):1961. doi: 10.3390/nano10101961.
Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a β-alanine surface treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally stable inverted PSCs. The improved device performance due to β-alanine-treated Cu:NiOx HTL is attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap density in the bulk perovskite active layer. The β-alanine surface treatment process on Cu:NiOx HTL eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance under accelerated heat lifetime conditions. By using the proposed surface treatment, we report optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h lifetime under accelerated heat lifetime conditions (60 °C, N).
使用铜掺杂氧化镍空穴传输层(HTL)的倒置钙钛矿太阳能电池(PSC)常常存在稳定性问题,并且在某些情况下会出现电流电压(J/V)滞后现象。在这项工作中,我们在铜掺杂氧化镍空穴传输层上开发了一种β-丙氨酸表面处理工艺,该工艺可提供无J/V滞后、高效且热稳定的倒置钙钛矿太阳能电池。由于β-丙氨酸处理的铜掺杂氧化镍空穴传输层而使器件性能得到改善,这归因于形成了紧密的铜掺杂氧化镍/钙钛矿界面以及降低了体相钙钛矿活性层中的电荷陷阱密度。铜掺杂氧化镍空穴传输层上的β-丙氨酸表面处理工艺消除了主要的热降解机制,在加速热寿命条件下使寿命性能提高了40倍。通过使用所提出的表面处理方法,我们报道了优化后的器件具有高功率转换效率(PCE)(高达15.51%)以及在加速热寿命条件(60°C,氮气环境)下长达1000小时的寿命。