Suppr超能文献

使用机器学习为子宫内膜癌创建预后系统。

Using machine learning to create prognostic systems for endometrial cancer.

机构信息

Columbia University, Vagelos College of Physicians and Surgeons, United States of America; NewYork-Presbyterian Hospital, United States of America.

Columbia University, Vagelos College of Physicians and Surgeons, United States of America.

出版信息

Gynecol Oncol. 2020 Dec;159(3):744-750. doi: 10.1016/j.ygyno.2020.09.047. Epub 2020 Oct 2.

Abstract

OBJECTIVE

We used a novel machine learning algorithm to develop a precision prognostication system for endometrial cancer.

METHODS

The Ensemble Algorithm for Clustering Cancer Data (EACCD) unsupervised machine learning algorithm was applied to women with endometrioid endometrial cancer in the Surveillance, Epidemiology, and End Results database from 2004 to 2015. The prognostic system was created based on TNM stage, grade, and age. The concordance (C-index) was used to cut dendrograms and create prognostic groups. Kaplan-Meier cancer-specific survival was employed to visualize the survival function of EACCD-based prognostic groups and AJCC groups.

RESULTS

A total of 46,773 women were identified. Using the machine learning algorithm with TNM stage, grade, and three age groups, eleven prognostic groups were generated with a C-index of 0.8380. The five-year survival rates for the eleven groups ranged from 37.9-99.8%. To simplify the classification system further, using visual inspection of the data we created a modified EACCD grouping, and combined the top six survival groups into three new prognostic groups. The new five-year survival rates for these eight modified prognostic groups included: 99.1% for group 1, 96.5% for group 2, 92.2% for group 3, 84.8% for group 4, 72.7% for group 5, 61.1% for group 6, 52.6% for group 7, and 37.9% for group 8. The C-index for the modified eight prognostic groups was 0.8313.

CONCLUSION

This novel machine learning algorithm demonstrates improved prognostic prediction for patients with endometrial cancer. Using machine learning for endometrial cancer allows for the integration of multiple factors to develop a precision prognostication system.

摘要

目的

我们使用一种新的机器学习算法来开发子宫内膜癌的精准预后系统。

方法

我们将 Ensemble Algorithm for Clustering Cancer Data (EACCD) 无监督机器学习算法应用于 2004 年至 2015 年 Surveillance, Epidemiology, and End Results 数据库中的子宫内膜样子宫内膜癌女性患者。该预后系统基于 TNM 分期、分级和年龄建立。使用一致性 (C-index) 切割聚类树并创建预后组。Kaplan-Meier 癌症特异性生存用于可视化基于 EACCD 的预后组和 AJCC 组的生存功能。

结果

共确定了 46773 名女性。使用包含 TNM 分期、分级和三组年龄的机器学习算法,共生成了 11 个预后组,C-index 为 0.8380。11 个组的五年生存率范围为 37.9%-99.8%。为了进一步简化分类系统,我们通过对数据的直观检查创建了一个改良的 EACCD 分组,并将前六个生存组合并为三个新的预后组。这八个改良预后组的五年生存率如下:组 1 为 99.1%,组 2 为 96.5%,组 3 为 92.2%,组 4 为 84.8%,组 5 为 72.7%,组 6 为 61.1%,组 7 为 52.6%,组 8 为 37.9%。改良后的八个预后组的 C-index 为 0.8313。

结论

这种新的机器学习算法为子宫内膜癌患者的预后预测提供了改进。使用机器学习进行子宫内膜癌分析可以整合多个因素来开发精准预后系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验