Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland.
Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
Sci Rep. 2020 Oct 5;10(1):16492. doi: 10.1038/s41598-020-73473-7.
Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-β-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-β-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-β/Smad2/3 and the antifibrotic TGF-β/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-β-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-β was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-β/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-β/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-β/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.
气道重塑伴上皮下纤维化,使支气管壁的生理功能丧失,是支气管哮喘的一个主要问题。源自哮喘患者的人支气管成纤维细胞(HBFs)在体外表现出向 TGF-β诱导的成纤维细胞向肌成纤维细胞转化(FMT)的预定性,这是上皮下纤维化的关键事件。由于常用的抗哮喘药物不能逆转气道的结构变化,并且增强的哮喘相关 TGF-β诱导的 FMT 的分子机制了解甚少,我们研究了促纤维化 TGF-β/Smad2/3 和抗纤维化 TGF-β/Smad1/5/9 信号通路之间的平衡及其在源自哮喘和非哮喘供体的 HBF 群体中肌成纤维细胞形成中的作用。我们的研究结果首次表明,与来自健康供体的成纤维细胞相比,源自哮喘供体的 TGF-β 诱导的促纤维化 Smad2/3 信号通路的激活增强,但 TGF-β 对抗纤维化 Smad1/5/(8)9 通路的激活明显减弱。与来自健康供体的成纤维细胞相比,源自哮喘供体的 HBF 中抗纤维化 TGF-β/Smad1/5/(8)9 通路的损伤与 FMT 增强相关。此外,我们表明,在非哮喘供体的 HBF 中沉默 Smad1 会增加这些细胞的 FMT 潜力。此外,我们证明通过 BMP7 或异甘草素[一种 TGF-β/Smad1/5/(8)9 通路的小分子激活剂]给药激活抗纤维化 Smad 信号传导可通过下调促纤维化基因(例如α-SMA 和纤连蛋白)来防止哮喘供体的 HBF 中的 FMT。我们的数据表明,使用 BMP7 模拟化合物影响抗纤维化和促纤维化 TGF-β/Smad 信号通路之间的平衡,为抑制哮喘气道重塑过程中的上皮下纤维化提供了前所未有的机会。