Suppr超能文献

变构调节谷氨酸脱氢酶脱氨活性。

Allosteric regulation of glutamate dehydrogenase deamination activity.

机构信息

School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, India.

Institute of Theoretical and Experimental Biophysics, Pushchino, Russia.

出版信息

Sci Rep. 2020 Oct 5;10(1):16523. doi: 10.1038/s41598-020-73743-4.

Abstract

Glutamate dehydrogenase (GDH) is a key enzyme interlinking carbon and nitrogen metabolism. Recent discoveries of the GDH specific role in breast cancer, hyperinsulinism/hyperammonemia (HI/HA) syndrome, and neurodegenerative diseases have reinvigorated interest on GDH regulation, which remains poorly understood despite extensive and long standing studies. Notwithstanding the growing evidence of the complexity of allosteric network behind GDH regulation, identifications of allosteric factors and associated mechanisms are paramount to deepen our understanding of the complex dynamics that regulate GDH enzymatic activity. Combining structural analyses of cryo-electron microscopy data with molecular dynamic simulations, here we show that the cofactor NADH is a key player in the GDH regulation process. Our structural analysis indicates that, binding to the regulatory sites in proximity of the antenna region, NADH acts as a positive allosteric modulator by enhancing both the affinity of the inhibitor GTP binding and inhibition of GDH catalytic activity. We further show that the binding of GTP to the NADH-bound GDH activates a triangular allosteric network, interlinking the inhibitor with regulatory and catalytic sites. This allostery produces a local conformational rearrangement that triggers an anticlockwise rotational motion of interlinked alpha-helices with specific tilted helical extension. This structural transition is a fundamental switch in the GDH enzymatic activity. It introduces a torsional stress, and the associated rotational shift in the Rossmann fold closes the catalytic cleft with consequent inhibition of the deamination process. In silico mutagenesis examinations further underpin the molecular basis of HI/HA dominant mutations and consequent over-activity of GDH through alteration of this allosteric communication network. These results shed new light on GDH regulation and may lay new foundation in the design of allosteric agents.

摘要

谷氨酸脱氢酶 (GDH) 是连接碳氮代谢的关键酶。最近发现 GDH 在乳腺癌、高胰岛素血症/高氨血症 (HI/HA) 综合征和神经退行性疾病中的特定作用,重新激发了人们对 GDH 调节的兴趣,但尽管进行了广泛而长期的研究,对 GDH 调节仍知之甚少。尽管越来越多的证据表明 GDH 调节的变构网络的复杂性,但鉴定变构因子和相关机制对于加深我们对调节 GDH 酶活性的复杂动力学的理解至关重要。结合冷冻电子显微镜数据的结构分析和分子动力学模拟,我们在这里表明辅酶 NADH 是 GDH 调节过程中的关键因素。我们的结构分析表明,NADH 结合到天线区域附近的调节位点,作为正变构调节剂,通过增强抑制剂 GTP 结合的亲和力和抑制 GDH 催化活性来发挥作用。我们进一步表明,NADH 结合的 GDH 与 GTP 的结合激活了三角变构网络,将抑制剂与调节和催化位点连接起来。这种变构作用产生了局部构象重排,触发了相互连接的α-螺旋的逆时针旋转运动,并带有特定的倾斜螺旋延伸。这种结构转变是 GDH 酶活性的基本开关。它引入了扭转应力,并且相关的旋转位移使 Rossmann 折叠关闭催化裂缝,从而抑制脱氨过程。计算机诱变研究进一步支持了 HI/HA 显性突变和 GDH 过度活性的分子基础,这是通过改变这种变构通讯网络实现的。这些结果为 GDH 调节提供了新的见解,并可能为变构剂的设计奠定新的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1677/7536180/4896270c66dc/41598_2020_73743_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验