Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
Ageing Res Rev. 2020 Dec;64:101191. doi: 10.1016/j.arr.2020.101191. Epub 2020 Oct 3.
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
阿尔茨海默病(AD)是一种无法治愈的进行性精神疾病。对 AD 死后大脑、细胞和小鼠模型进行了多年的深入研究,揭示了多种细胞变化参与了疾病进程,包括线粒体异常、突触损伤和神经胶质/星形胶质细胞激活,以及淀粉样β(Aβ)和过度磷酸化 tau(p-tau)随年龄的积累。突触损伤和线粒体功能障碍是疾病进程中的早期细胞变化。健康且功能活跃的线粒体是细胞功能所必需的。功能失调的线粒体在衰老和 AD 中起着核心作用。自噬是一种细胞过程,通过该过程可以从细胞中选择性地去除受损的线粒体,并进行线粒体质量和生物发生。自噬功能障碍导致缺陷细胞器和受损线粒体在细胞中逐渐积累。在 AD 中,Aβ和 p-tau 水平的增加可诱导活性氧(ROS)的产生,导致线粒体过度碎片化,并促进有缺陷的自噬。本文讨论了线粒体研究的最新进展,并强调了多种类型的自噬,包括 Aβ和 p-tau 诱导的自噬、应激诱导的自噬、受体介导的自噬、泛素介导的自噬和基础自噬。本文还讨论了线粒体的生理状态,包括分裂-融合平衡、Ca 转运以及正常和患病状态下的线粒体转运。我们的文章总结了目前的治疗干预措施,如化学或天然自噬增强剂,这些干预措施影响 AD 中的自噬。我们的文章讨论了 Drp1 的部分减少是否可以作为自噬增强剂,以及 AD 和其他神经退行性疾病中自噬的治疗靶点。