文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人脂肪间充质干细胞的用于体内膝关节软骨再生的医学微机器人系统。

Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo.

机构信息

Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea.

School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.

出版信息

Sci Robot. 2020 Jan 22;5(38). doi: 10.1126/scirobotics.aay6626.


DOI:10.1126/scirobotics.aay6626
PMID:33022593
Abstract

Targeted cell delivery by a magnetically actuated microrobot with a porous structure is a promising technique to enhance the low targeting efficiency of mesenchymal stem cell (MSC) in tissue regeneration. However, the relevant research performed to date is only in its proof-of-concept stage. To use the microrobot in a clinical stage, biocompatibility and biodegradation materials should be considered in the microrobot, and its efficacy needs to be verified using an in vivo model. In this study, we propose a human adipose-derived MSC-based medical microrobot system for knee cartilage regeneration and present an in vivo trial to verify the efficacy of the microrobot using the cartilage defect model. The microrobot system consists of a microrobot body capable of supporting MSCs, an electromagnetic actuation system for three-dimensional targeting of the microrobot, and a magnet for fixation of the microrobot to the damaged cartilage. Each component was designed and fabricated considering the accessibility of the patient and medical staff, as well as clinical safety. The efficacy of the microrobot system was then assessed in the cartilage defect model of rabbit knee with the aim to obtain clinical trial approval.

摘要

基于具有多孔结构的磁驱动微机器人的靶向细胞递送是提高间充质干细胞(MSC)在组织再生中靶向效率低的一种有前途的技术。然而,迄今为止进行的相关研究仅处于概念验证阶段。为了将微机器人应用于临床阶段,微机器人中应考虑使用生物相容性和可生物降解材料,并且需要使用体内模型来验证其功效。在这项研究中,我们提出了一种基于人脂肪来源的间充质干细胞的用于膝关节软骨再生的医疗微机器人系统,并进行了一项体内试验,使用软骨缺损模型来验证微机器人的功效。微机器人系统由能够支撑间充质干细胞的微机器人主体、用于微机器人三维靶向的电磁致动系统以及用于将微机器人固定到受损软骨上的磁铁组成。每个组件的设计和制造都考虑了患者和医务人员的可及性以及临床安全性。然后,在兔膝关节软骨缺损模型中评估微机器人系统的功效,旨在获得临床试验批准。

相似文献

[1]
Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo.

Sci Robot. 2020-1-22

[2]
Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.

J Biomed Mater Res A. 2008-12-15

[3]
Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

PLoS One. 2015-7-29

[4]
Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells.

Cell Transplant. 2007

[5]
Restoration of cartilage defects using a superparamagnetic iron oxide-labeled adipose-derived mesenchymal stem cell and TGF-β3-loaded bilayer PLGA construct.

Regen Med. 2020-6

[6]
Intra-articular delivery of synovium-resident mesenchymal stem cells via BMP-7-loaded fibrous PLGA scaffolds for cartilage repair.

J Control Release. 2019-4-4

[7]
Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds.

Biomaterials. 2011-4-13

[8]
Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration.

Curr Pharm Biotechnol. 2019

[9]
Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

Stem Cells Transl Med. 2015-9

[10]
Matrilin-3 codelivery with adipose-derived mesenchymal stem cells promotes articular cartilage regeneration in a rat osteochondral defect model.

J Tissue Eng Regen Med. 2017-10-2

引用本文的文献

[1]
Picoeukaryote-based biohybrid microrobots for active delivery in the kidney.

Sci Adv. 2025-7-11

[2]
Technology Roadmap of Micro/Nanorobots.

ACS Nano. 2025-7-15

[3]
Size and Illumination Matters: Local Magnetic Actuation and Fluorescence Imaging for Microrobotics.

J Indian Inst Sci. 2024

[4]
State of the Art in Actuation of Micro/Nanorobots for Biomedical Applications.

Small Sci. 2024-2-2

[5]
Active microgel particle swarms for intrabronchial targeted delivery.

Sci Adv. 2025-3-14

[6]
Enhancement of adipose stem cell quality via Cu-MON: Transcriptome and bioinformatics analysis of normal and diabetic stem cells.

FASEB Bioadv. 2025-1-18

[7]
Micro- and Nanomotors: Engineered Tools for Targeted and Efficient Biomedicine.

ACS Nano. 2025-3-11

[8]
3D-printed constructs deliver bioactive cargos to expedite cartilage regeneration.

J Pharm Anal. 2024-12

[9]
Magnetic soft microrobots for erectile dysfunction therapy.

Proc Natl Acad Sci U S A. 2024-12-3

[10]
Unveiling the future: Bibliometric analysis on the application of nanomaterials in osteoarthritis (2006-2023).

Heliyon. 2024-8-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索