Suppr超能文献

基于心脏磁共振的冠状动脉疾病诊断的随机森林卷积神经网络特征 RF-CNN-F

RF-CNN-F: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance.

机构信息

Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia.

Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

出版信息

Sci Rep. 2022 Jul 1;12(1):11178. doi: 10.1038/s41598-022-15374-5.

Abstract

Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive coronary angiography is the reference standard for diagnosing CAD but is costly and associated with risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can serve as a gatekeeper to downstream invasive testing. Machine learning methods are increasingly applied for automated interpretation of imaging and other clinical results for medical diagnosis. In this study, we proposed a novel CAD detection method based on CMR images by utilizing the feature extraction ability of deep neural networks and combining the features with the aid of a random forest for the very first time. It is necessary to convert image data to numeric features so that they can be used in the nodes of the decision trees. To this end, the predictions of multiple stand-alone convolutional neural networks (CNNs) were considered as input features for the decision trees. The capability of CNNs in representing image data renders our method a generic classification approach applicable to any image dataset. We named our method RF-CNN-F, which stands for Random Forest with CNN Features. We conducted experiments on a large CMR dataset that we have collected and made publicly accessible. Our method achieved excellent accuracy (99.18%) using Adam optimizer compared to a stand-alone CNN trained using fivefold cross validation (93.92%) tested on the same dataset.

摘要

冠状动脉疾病(CAD)是一种发病率和死亡率都很高的常见疾病。有创性冠状动脉造影是诊断 CAD 的金标准,但费用高且存在风险。心脏磁共振(CMR)等无创成像技术有助于 CAD 的评估,可以作为下游有创性检查的筛选手段。机器学习方法越来越多地应用于医学诊断中的影像和其他临床结果的自动解读。在这项研究中,我们首次提出了一种基于 CMR 图像的 CAD 检测方法,该方法利用深度神经网络的特征提取能力,并结合随机森林的特征来进行检测。有必要将影像数据转换为数值特征,以便将其用于决策树的节点中。为此,我们考虑将多个独立卷积神经网络(CNN)的预测作为决策树的输入特征。CNN 在表示影像数据方面的能力使我们的方法成为一种通用的分类方法,适用于任何影像数据集。我们将该方法命名为 RF-CNN-F,代表基于 CNN 特征的随机森林。我们在我们收集并公开提供的大型 CMR 数据集上进行了实验。与在同一数据集上使用五重交叉验证训练的独立 CNN 相比(93.92%),我们的方法使用 Adam 优化器达到了 99.18%的出色准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f64e/9249743/6782e41cd193/41598_2022_15374_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验