Kaye Elena A, Aherne Emily A, Duzgol Cihan, Häggström Ida, Kobler Erich, Mazaheri Yousef, Fung Maggie M, Zhang Zhigang, Otazo Ricardo, Vargas Hebert A, Akin Oguz
Departments of Medical Physics (E.A.K., I.H., Y.M., R.O.), Radiology (E.A.A., C.D., R.O., H.A.V., O.A.), and Epidemiology and Biostatistics (Z.Z.), Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room S1212B, New York, NY 10065; Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria (E.K.); and MR Applications & Workflow Team, GE Healthcare, Chicago, Ill (M.M.F.).
Radiol Artif Intell. 2020 Aug 26;2(5):e200007. doi: 10.1148/ryai.2020200007.
To investigate the feasibility of accelerating prostate diffusion-weighted imaging (DWI) by reducing the number of acquired averages and denoising the resulting image using a proposed guided denoising convolutional neural network (DnCNN).
Raw data from the prostate DWI scans were retrospectively gathered between July 2018 and July 2019 from six single-vendor MRI scanners. There were 103 datasets used for training (median age, 64 years; interquartile range [IQR], 11), 15 for validation (median age, 68 years; IQR, 12), and 37 for testing (median age, 64 years; IQR, 12). High -value diffusion-weighted (hb DW) data were reconstructed into noisy images using two averages and reference images using all 16 averages. A conventional DnCNN was modified into a guided DnCNN, which uses the low -value DW image as a guidance input. Quantitative and qualitative reader evaluations were performed on the denoised hb DW images. A cumulative link mixed regression model was used to compare the readers' scores. The agreement between the apparent diffusion coefficient (ADC) maps (denoised vs reference) was analyzed using Bland-Altman analysis.
Compared with the original DnCNN, the guided DnCNN produced denoised hb DW images with higher peak signal-to-noise ratio (32.79 ± 3.64 [standard deviation] vs 33.74 ± 3.64), higher structural similarity index (0.92 ± 0.05 vs 0.93 ± 0.04), and lower normalized mean square error (3.9% ± 10 vs 1.6% ± 1.5) ( < .001 for all). Compared with the reference images, the denoised images received higher image quality scores from the readers ( < .0001). The ADC values based on the denoised hb DW images were in good agreement with the reference ADC values (mean ADC difference ranged from -0.04 to 0.02 × 10 mm/sec).
Accelerating prostate DWI by reducing the number of acquired averages and denoising the resulting image using the proposed guided DnCNN is technically feasible. © RSNA, 2020.
通过减少采集平均次数并使用提出的引导去噪卷积神经网络(DnCNN)对所得图像进行去噪,研究加速前列腺扩散加权成像(DWI)的可行性。
回顾性收集2018年7月至2019年7月期间来自六台单一供应商MRI扫描仪的前列腺DWI扫描原始数据。103个数据集用于训练(中位年龄64岁;四分位间距[IQR]为11),15个用于验证(中位年龄68岁;IQR为12),37个用于测试(中位年龄64岁;IQR为12)。高值扩散加权(hb DW)数据使用两次平均重建为噪声图像,参考图像使用全部16次平均重建。将传统的DnCNN修改为引导DnCNN,其使用低值DW图像作为引导输入。对去噪后的hb DW图像进行定量和定性的阅片者评估。使用累积链接混合回归模型比较阅片者的评分。使用Bland-Altman分析分析表观扩散系数(ADC)图(去噪后与参考)之间的一致性。
与原始DnCNN相比,引导DnCNN生成的去噪hb DW图像具有更高的峰值信噪比(32.79±3.64[标准差]对33.74±3.64)、更高的结构相似性指数(0.92±0.05对0.93±0.04)和更低的归一化均方误差(3.9%±1.0对1.6%±1.5)(所有均P<0.001)。与参考图像相比,去噪后的图像从阅片者处获得了更高的图像质量评分(P<0.0001)。基于去噪后的hb DW图像的ADC值与参考ADC值具有良好的一致性(平均ADC差异范围为-0.04至0.02×10⁻³mm²/sec)。
通过减少采集平均次数并使用提出的引导DnCNN对所得图像进行去噪来加速前列腺DWI在技术上是可行的。©RSNA,2020。