Suppr超能文献

使用残差卷积网络的直肠癌加速扩散加权磁共振成像

Accelerated Diffusion-Weighted MRI of Rectal Cancer Using a Residual Convolutional Network.

作者信息

Mohammadi Mohaddese, Kaye Elena A, Alus Or, Kee Youngwook, Golia Pernicka Jennifer S, El Homsi Maria, Petkovska Iva, Otazo Ricardo

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Bioengineering (Basel). 2023 Mar 14;10(3):359. doi: 10.3390/bioengineering10030359.

Abstract

This work presents a deep-learning-based denoising technique to accelerate the acquisition of high -value diffusion-weighted MRI for rectal cancer. A denoising convolutional neural network (DCNN) with a combined L1-L2 loss function was developed to denoise high -value diffusion-weighted MRI data acquired with fewer repetitions (NEX: number of excitations) using the low -value image as an anatomical guide. DCNN was trained using 85 datasets acquired on patients with rectal cancer and tested on 20 different datasets with NEX = 1, 2, and 4, corresponding to acceleration factors of 16, 8, and 4, respectively. Image quality was assessed qualitatively by expert body radiologists. Reader 1 scored similar overall image quality between denoised images with NEX = 1 and NEX = 2, which were slightly lower than the reference. Reader 2 scored similar quality between NEX = 1 and the reference, while better quality for NEX = 2. Denoised images with fourfold acceleration (NEX = 4) received even higher scores than the reference, which is due in part to the effect of gas-related motion in the rectum, which affects longer acquisitions. The proposed deep learning denoising technique can enable eightfold acceleration with similar image quality (average image quality = 2.8 ± 0.5) and fourfold acceleration with higher image quality (3.0 ± 0.6) than the clinical standard (2.5 ± 0.8) for improved diagnosis of rectal cancer.

摘要

这项工作提出了一种基于深度学习的去噪技术,以加速直肠癌高价值扩散加权磁共振成像(MRI)的采集。开发了一种具有组合L1-L2损失函数的去噪卷积神经网络(DCNN),以使用低价值图像作为解剖学指南,对以较少重复次数(NEX:激发次数)采集的高价值扩散加权MRI数据进行去噪。DCNN使用85个在直肠癌患者身上采集的数据集进行训练,并在20个不同的数据集上进行测试,NEX分别为1、2和4,对应的加速因子分别为16、8和4。图像质量由专业的体部放射科医生进行定性评估。读者1对NEX = 1和NEX = 2的去噪图像的整体图像质量评分相似,略低于参考图像。读者2对NEX = 1和参考图像的质量评分相似,而NEX = 2的图像质量更好。四倍加速(NEX = 4)的去噪图像得分甚至高于参考图像,部分原因是直肠中与气体相关的运动的影响,这种运动对较长时间的采集有影响。所提出的深度学习去噪技术能够实现八倍加速且图像质量相似(平均图像质量 = 2.8 ± 0.5),四倍加速且图像质量高于临床标准(2.5 ± 0.8)(3.0 ± 0.6),以改善直肠癌的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a5/10045764/92996952cf63/bioengineering-10-00359-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验