Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
Int J Mol Sci. 2020 Oct 6;21(19):7370. doi: 10.3390/ijms21197370.
Bacterial biofilm formation on wet surfaces represents a significant problem in medicine and environmental sciences. One of the strategies to prevent or eliminate surface adhesion of organisms is surface modification and coating. However, the current coating technologies possess several drawbacks, including limited durability, low biocompatibility and high cost. Here, we present a simple antibacterial modification of titanium, mica and glass surfaces using self-assembling nano-structures. We have designed two different nano-structure coatings composed of fluorinated phenylalanine via the drop-cast coating technique. We investigated and characterized the modified surfaces by scanning electron microscopy, X-ray diffraction and wettability analyses. Exploiting the antimicrobial property of the nano-structures, we successfully hindered the viability of and on the coated surfaces in both aerobic and anaerobic conditions. Notably, we found lower bacteria adherence to the coated surfaces and a reduction of 86-99% in the total metabolic activity of the bacteria. Our results emphasize the interplay between self-assembly and antimicrobial activity of small self-assembling molecules, thus highlighting a new approach of biofilm control for implementation in biomedicine and other fields.
湿表面上细菌生物膜的形成是医学和环境科学中的一个重大问题。防止或消除生物体表面附着的策略之一是表面改性和涂层。然而,目前的涂层技术存在一些缺点,包括耐久性有限、生物相容性低和成本高。在这里,我们使用自组装纳米结构对钛、云母和玻璃表面进行了简单的抗菌改性。我们通过滴涂技术设计了两种由全氟苯丙氨酸组成的不同纳米结构涂层。我们通过扫描电子显微镜、X 射线衍射和润湿性分析研究和表征了改性表面。利用纳米结构的抗菌特性,我们成功地阻止了 和 在有氧和无氧条件下在涂层表面的存活。值得注意的是,我们发现涂层表面上的细菌附着减少,细菌的总代谢活性降低了 86-99%。我们的结果强调了自组装和小分子抗菌活性之间的相互作用,从而突出了一种用于生物医学和其他领域的控制生物膜的新方法。