Suppr超能文献

基于腹侧被盖区静息态功能连接识别网络成瘾个体

Identification of internet gaming disorder individuals based on ventral tegmental area resting-state functional connectivity.

机构信息

School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, People's Republic of China.

Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, China.

出版信息

Brain Imaging Behav. 2021 Aug;15(4):1977-1985. doi: 10.1007/s11682-020-00391-7. Epub 2020 Oct 10.

Abstract

Objective neuroimaging markers are imminently in need for more accurate clinical diagnosis of Internet gaming disorder (IGD). Recent neuroimaging evidence suggested that IGD is associated with abnormalities in the mesolimbic dopamine (DA) system. As the key nodes of the DA pathways, ventral tegmental area (VTA) and substantia nigra (SN) and their connected brain regions may serve as potential markers to identify IGD. Therefore, we aimed to develop optimal classifiers to identify IGD individuals by using VTA and bilateral SN resting-state functional connectivity (RSFC) patterns. A dataset including 146 adolescents (66 IGDs and 80 healthy controls (HCs)) was used to build classification models and another independent dataset including 28 subjects (14 IGDs and 14 HCs) was employed to validate the generalization ability of the models. Multi-voxel pattern analysis (MVPA) with linear support vector machine (SVM) was used to select the features. Our results demonstrated that the VTA RSFC circuits successfully identified IGD individuals (mean accuracy: 86.1%, mean sensitivity: 84.5%, mean specificity: 86.6%, the mean area under the receiver operating characteristic curve: 0.91). Furthermore, the independent generalization ability of the VTA RSFC classifier model was also satisfied (accuracy = 78.5%, sensitivity = 71.4%, specificity = 85.8%). The VTA connectivity circuits that were selected as distinguishing features were mainly included bilateral thalamus, right hippocampus, right pallidum, right temporal pole superior gyrus and bilateral temporal superior gyrus. These findings demonstrated that the potential of the resting-state neuroimaging features of VTA RSFC as objective biomarkers for the IGD clinical diagnosis in the future.

摘要

客观神经影像学标志物对于更准确地诊断网络游戏障碍(IGD)是急需的。最近的神经影像学证据表明,IGD 与中脑边缘多巴胺(DA)系统的异常有关。作为 DA 通路的关键节点,腹侧被盖区(VTA)和黑质(SN)及其连接的脑区可能作为潜在的标志物来识别 IGD。因此,我们旨在通过使用 VTA 和双侧 SN 静息状态功能连接(RSFC)模式来开发最佳分类器来识别 IGD 个体。一个包含 146 名青少年(66 名 IGD 和 80 名健康对照(HC))的数据集用于构建分类模型,另一个包含 28 名受试者(14 名 IGD 和 14 名 HCs)的独立数据集用于验证模型的泛化能力。使用线性支持向量机(SVM)的多体素模式分析(MVPA)来选择特征。我们的结果表明,VTA RSFC 回路成功地识别了 IGD 个体(平均准确率:86.1%,平均灵敏度:84.5%,平均特异性:86.6%,平均接收者操作特征曲线下面积:0.91)。此外,VTA RSFC 分类器模型的独立泛化能力也得到了满足(准确率=78.5%,灵敏度=71.4%,特异性=85.8%)。被选为区分特征的 VTA 连接回路主要包括双侧丘脑、右侧海马体、右侧苍白球、右侧颞极上回和双侧颞上回。这些发现表明,VTA RSFC 的静息状态神经影像学特征作为未来 IGD 临床诊断的客观生物标志物具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验