Suppr超能文献

评估与临床前阿尔茨海默病生物标志物相关的静息状态 BOLD 变异性。

Evaluating resting-state BOLD variability in relation to biomarkers of preclinical Alzheimer's disease.

机构信息

Department of Psychological & Brain Sciences, St. Louis, MO, USA; Department of Neurology, St. Louis, MO, USA.

Department of Neurology, St. Louis, MO, USA; Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Neurobiol Aging. 2020 Dec;96:233-245. doi: 10.1016/j.neurobiolaging.2020.08.007. Epub 2020 Aug 18.

Abstract

Recent functional magnetic resonance imaging studies have demonstrated that moment-to-moment variability in the blood oxygen level-dependent (BOLD) signal is related to age differences, cognition, and symptomatic Alzheimer's disease (AD). However, no studies have examined BOLD variability in the context of preclinical AD. We tested relationships between resting-state BOLD variability and biomarkers of amyloidosis, tauopathy, and neurodegeneration in a large (N = 321), well-characterized sample of cognitively normal adults (age = 39-93), using multivariate machine learning techniques. Furthermore, we controlled for cardiovascular health factors, which may contaminate resting-state BOLD variability estimates. BOLD variability, particularly in the default mode network, was related to cerebrospinal fluid (CSF) amyloid-β42 but was not related to CSF phosphorylated tau-181. Furthermore, BOLD variability estimates were also related to markers of neurodegeneration, including CSF neurofilament light protein, hippocampal volume, and a cortical thickness composite. Notably, relationships with hippocampal volume and cortical thickness survived correction for cardiovascular health and also contributed to age-related differences in BOLD variability. Thus, BOLD variability may be sensitive to preclinical pathology, including amyloidosis and neurodegeneration in AD-sensitive areas.

摘要

最近的功能磁共振成像研究表明,血氧水平依赖(BOLD)信号的瞬间变异性与年龄差异、认知和有症状的阿尔茨海默病(AD)有关。然而,尚无研究在 AD 临床前阶段检查 BOLD 变异性。我们使用多变量机器学习技术,在一个由认知正常的成年人(年龄为 39-93 岁)组成的大型(N=321)、特征良好的样本中,测试了静息状态 BOLD 变异性与淀粉样蛋白、tau 病和神经退行性变生物标志物之间的关系。此外,我们还控制了心血管健康因素,这些因素可能会污染静息状态 BOLD 变异性估计值。BOLD 变异性,特别是在默认模式网络中,与脑脊液(CSF)中的β-淀粉样蛋白 42 有关,但与 CSF 中磷酸化 tau-181 无关。此外,BOLD 变异性估计值还与神经退行性变的标志物有关,包括 CSF 神经丝轻链蛋白、海马体积和皮质厚度综合指标。值得注意的是,与海马体积和皮质厚度的关系在心血管健康校正后仍然存在,并且也有助于 BOLD 变异性与年龄相关的差异。因此,BOLD 变异性可能对淀粉样蛋白和 AD 敏感区域的神经退行性变等临床前病理学敏感。

相似文献

引用本文的文献

本文引用的文献

5
Neurofilaments in disease: what do we know?神经丝在疾病中的作用:我们了解多少?
Curr Opin Neurobiol. 2020 Apr;61:105-115. doi: 10.1016/j.conb.2020.02.001. Epub 2020 Mar 6.
7
Machine Learning With Neuroimaging: Evaluating Its Applications in Psychiatry.机器学习与神经影像学:评估其在精神病学中的应用。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798. doi: 10.1016/j.bpsc.2019.11.007. Epub 2019 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验