Suppr超能文献

健康老年人功能、脑血管和结构神经影像学的多模态融合分析。

Multimodal fusion analysis of functional, cerebrovascular and structural neuroimaging in healthy aging subjects.

机构信息

Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.

The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK.

出版信息

Hum Brain Mapp. 2022 Dec 15;43(18):5490-5508. doi: 10.1002/hbm.26025. Epub 2022 Jul 20.

Abstract

Brain aging is a complex process that requires a multimodal approach. Neuroimaging can provide insights into brain morphology, functional organization, and vascular dynamics. However, most neuroimaging studies of aging have focused on each imaging modality separately, limiting the understanding of interrelations between processes identified by different modalities and their relevance to cognitive decline in aging. Here, we used a data-driven multimodal approach, linked independent component analysis (ICA), to jointly analyze magnetic resonance imaging (MRI) of grey matter volume, cerebrovascular, and functional network topographies in relation to measures of fluid intelligence. Neuroimaging and cognitive data from the Cambridge Centre for Ageing and Neuroscience study were used, with healthy participants aged 18-88 years (main dataset n = 215 and secondary dataset n = 433). Using linked ICA, functional network activities were characterized in independent components but not captured in the same component as structural and cerebrovascular patterns. Split-sample (n = 108/107) and out-of-sample (n = 433) validation analyses using linked ICA were also performed. Global grey matter volume with regional cerebrovascular changes and the right frontoparietal network activity were correlated with age-related and individual differences in fluid intelligence. This study presents the insights from linked ICA to bring together measurements from multiple imaging modalities, with independent and additive information. We propose that integrating multiple neuroimaging modalities allows better characterization of brain pattern variability and changes associated with healthy aging.

摘要

大脑老化是一个复杂的过程,需要采用多模态方法。神经影像学可以提供有关大脑形态、功能组织和血管动力学的见解。然而,大多数关于衰老的神经影像学研究都分别侧重于每种成像模式,限制了对不同模式识别的过程之间的相互关系的理解,以及它们与衰老过程中认知能力下降的相关性的理解。在这里,我们使用了一种数据驱动的多模态方法,即连接独立成分分析(ICA),联合分析磁共振成像(MRI)的灰质体积、脑血管和功能网络拓扑结构与流体智力测量值之间的关系。使用剑桥衰老与神经科学中心研究的神经影像学和认知数据,包括年龄在 18-88 岁的健康参与者(主要数据集 n=215 人,次要数据集 n=433 人)。使用连接的 ICA,可以在独立成分中描述功能网络活动,但不能在与结构和脑血管模式相同的成分中捕获。还进行了基于分割样本(n=108/107)和样本外(n=433)的验证分析。全局灰质体积与区域性脑血管变化以及右侧额顶网络活动与流体智力的年龄相关和个体差异相关。本研究通过连接 ICA 提出了见解,将来自多种成像模式的测量结果结合在一起,具有独立和附加信息。我们提出,整合多种神经影像学模式可以更好地描述与健康衰老相关的大脑模式变异性和变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b508/9704789/87d65d10edbb/HBM-43-5490-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验