Xie Mengqi, Liu Zhiying, Dai Fangfang, Cao Zhen, Wang Xiaobei
The Second Clinical Medical College of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, People's Republic of China.
Department of Clinical Medicine, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, People's Republic of China.
Int J Gen Med. 2025 Jun 12;18:3117-3128. doi: 10.2147/IJGM.S524450. eCollection 2025.
Stroke-associated pneumonia (SAP), a critical complication of ischemic stroke, significantly worsens outcomes. Our aim was to identify SAP risk factors and develop a machine learning (ML) model for early risk stratification.
This retrospective study analyzed 574 ischemic stroke patients, divided into training (75%) and testing (25%) sets. Nine ML models were trained using 10-fold cross-validation, with performance evaluated by accuracy, AUC-ROC, and F1-score. Key predictors were interpreted via SHAP analysis. An interactive web tool was developed using the optimal model.
SAP incidence was 32.4%. LightGBM demonstrated superior predictive performance (ranking score=54) without overfitting, identifying Monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammation index (SII), NIHSS score, age, aggregate index of systemic inflammation (AISI), and platelet-to-lymphocyte ratio (PLR) as the top predictors.
Our findings demonstrate that machine learning models exhibit strong predictive performance for SAP, with the LightGBM algorithm outperforming other approaches. The web-based prediction tool developed from this model provides clinicians with actionable insights to support real-time clinical decision-making.
卒中相关性肺炎(SAP)是缺血性卒中的一种严重并发症,会显著恶化预后。我们的目的是识别SAP的危险因素,并开发一种用于早期风险分层的机器学习(ML)模型。
这项回顾性研究分析了574例缺血性卒中患者,分为训练集(75%)和测试集(25%)。使用10折交叉验证训练了9种ML模型,通过准确率、AUC-ROC和F1分数评估性能。通过SHAP分析解释关键预测因素。使用最优模型开发了一个交互式网络工具。
SAP发生率为32.4%。LightGBM表现出卓越的预测性能(排名分数=54)且无过拟合现象,确定单核细胞与淋巴细胞比值(MLR)、全身免疫炎症指数(SII)、美国国立卫生研究院卒中量表(NIHSS)评分、年龄、全身炎症综合指数(AISI)和血小板与淋巴细胞比值(PLR)为主要预测因素。
我们的研究结果表明,机器学习模型对SAP具有强大的预测性能,LightGBM算法优于其他方法。基于此模型开发的网络预测工具为临床医生提供了可用于支持实时临床决策的实用见解。