Suppr超能文献

基于病理组学的结直肠癌微卫星不稳定性预测模型的建立与阐释。

Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.

机构信息

Information Management and Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.

AI Lab, Tencent, Shenzhen, China.

出版信息

Theranostics. 2020 Sep 2;10(24):11080-11091. doi: 10.7150/thno.49864. eCollection 2020.

Abstract

Microsatellite instability (MSI) has been approved as a pan-cancer biomarker for immune checkpoint blockade (ICB) therapy. However, current MSI identification methods are not available for all patients. We proposed an ensemble multiple instance deep learning model to predict microsatellite status based on histopathology images, and interpreted the pathomics-based model with multi-omics correlation. Two cohorts of patients were collected, including 429 from The Cancer Genome Atlas (TCGA-COAD) and 785 from an Asian colorectal cancer (CRC) cohort (Asian-CRC). We established the pathomics model, named Ensembled Patch Likelihood Aggregation (EPLA), based on two consecutive stages: patch-level prediction and WSI-level prediction. The initial model was developed and validated in TCGA-COAD, and then generalized in Asian-CRC through transfer learning. The pathological signatures extracted from the model were analyzed with genomic and transcriptomic profiles for model interpretation. The EPLA model achieved an area-under-the-curve (AUC) of 0.8848 (95% CI: 0.8185-0.9512) in the TCGA-COAD test set and an AUC of 0.8504 (95% CI: 0.7591-0.9323) in the external validation set Asian-CRC after transfer learning. Notably, EPLA captured the relationship between pathological phenotype of poor differentiation and MSI ( < 0.001). Furthermore, the five pathological imaging signatures identified from the EPLA model were associated with mutation burden and DNA damage repair related genotype in the genomic profiles, and antitumor immunity activated pathway in the transcriptomic profiles. Our pathomics-based deep learning model can effectively predict MSI from histopathology images and is transferable to a new patient cohort. The interpretability of our model by association with pathological, genomic and transcriptomic phenotypes lays the foundation for prospective clinical trials of the application of this artificial intelligence (AI) platform in ICB therapy.

摘要

微卫星不稳定性 (MSI) 已被批准作为免疫检查点阻断 (ICB) 治疗的泛癌生物标志物。然而,目前的 MSI 识别方法并非适用于所有患者。我们提出了一种基于集成多实例深度学习的模型,该模型可基于组织病理学图像预测微卫星状态,并通过多组学相关性对基于病理组学的模型进行解释。我们收集了两个患者队列,包括来自癌症基因组图谱 (TCGA-COAD) 的 429 名患者和来自亚洲结直肠癌 (CRC) 队列 (Asian-CRC) 的 785 名患者。我们基于两个连续阶段建立了基于病理组学的模型,命名为集成斑块似然聚合 (EPLA):斑块级预测和 WSI 级预测。初始模型在 TCGA-COAD 中进行了开发和验证,然后通过迁移学习在 Asian-CRC 中进行了推广。从模型中提取的病理特征与基因组和转录组谱进行分析,以进行模型解释。EPLA 模型在 TCGA-COAD 测试集中的曲线下面积 (AUC) 为 0.8848(95%CI:0.8185-0.9512),在经过迁移学习后的外部验证集 Asian-CRC 中的 AUC 为 0.8504(95%CI:0.7591-0.9323)。值得注意的是,EPLA 捕捉到了病理表型分化不良与 MSI 之间的关系(<0.001)。此外,从 EPLA 模型中确定的五个病理成像特征与基因组图谱中的突变负担和 DNA 损伤修复相关基因型以及转录组图谱中的抗肿瘤免疫激活途径相关。我们基于病理组学的深度学习模型可以从组织病理学图像中有效预测 MSI,并且可以转移到新的患者队列。通过与病理、基因组和转录组表型的关联对我们的模型进行解释,为该人工智能 (AI) 平台在 ICB 治疗中的应用的前瞻性临床试验奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14cf/7532670/70a82c6ee317/thnov10p11080g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验