Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
Nat Commun. 2019 Dec 18;10(1):5642. doi: 10.1038/s41467-019-13647-8.
Deep learning algorithms have been successfully used in medical image classification. In the next stage, the technology of acquiring explainable knowledge from medical images is highly desired. Here we show that deep learning algorithm enables automated acquisition of explainable features from diagnostic annotation-free histopathology images. We compare the prediction accuracy of prostate cancer recurrence using our algorithm-generated features with that of diagnosis by expert pathologists using established criteria on 13,188 whole-mount pathology images consisting of over 86 billion image patches. Our method not only reveals findings established by humans but also features that have not been recognized, showing higher accuracy than human in prognostic prediction. Combining both our algorithm-generated features and human-established criteria predicts the recurrence more accurately than using either method alone. We confirm robustness of our method using external validation datasets including 2276 pathology images. This study opens up fields of machine learning analysis for discovering uncharted knowledge.
深度学习算法已成功应用于医学图像分类。下一阶段,人们非常希望从医学图像中获取可解释知识的技术。在这里,我们展示了深度学习算法能够从无诊断注释的组织病理学图像中自动获取可解释的特征。我们比较了使用我们的算法生成的特征进行前列腺癌复发预测的准确性,以及使用既定标准由专家病理学家进行诊断的准确性,这些标准是基于包含超过 860 亿个图像块的 13188 张全载玻片病理图像得出的。我们的方法不仅揭示了人类已发现的结果,还揭示了尚未被人类识别的特征,在预后预测方面比人类具有更高的准确性。将我们的算法生成的特征和人类建立的标准结合起来进行预测,比单独使用任何一种方法都更准确。我们使用包括 2276 张病理图像在内的外部验证数据集来确认我们方法的稳健性。这项研究为发现未知知识开辟了机器学习分析领域。