Suppr超能文献

深度卷积神经网络集成方法在图像分类中的相对性能

The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification.

作者信息

Ju Cheng, Bibaut Aurélien, van der Laan Mark

机构信息

University of California, Berkeley.

出版信息

J Appl Stat. 2018;45(15):2800-2818. doi: 10.1080/02664763.2018.1441383. Epub 2018 Feb 26.

Abstract

Artificial neural networks have been successfully applied to a variety of machine learning tasks, including image recognition, semantic segmentation, and machine translation. However, few studies fully investigated ensembles of artificial neural networks. In this work, we investigated multiple widely used ensemble methods, including unweighted averaging, majority voting, the Bayes Optimal Classifier, and the (discrete) Super Learner, for image recognition tasks, with deep neural networks as candidate algorithms. We designed several experiments, with the candidate algorithms being the same network structure with different model checkpoints within a single training process, networks with same structure but trained multiple times stochastically, and networks with different structure. In addition, we further studied the over-confidence phenomenon of the neural networks, as well as its impact on the ensemble methods. Across all of our experiments, the Super Learner achieved best performance among all the ensemble methods in this study.

摘要

人工神经网络已成功应用于各种机器学习任务,包括图像识别、语义分割和机器翻译。然而,很少有研究对人工神经网络的集成进行全面研究。在这项工作中,我们研究了多种广泛使用的集成方法,包括无加权平均、多数投票、贝叶斯最优分类器和(离散)超级学习器,用于图像识别任务,以深度神经网络作为候选算法。我们设计了几个实验,候选算法包括在单个训练过程中具有不同模型检查点的相同网络结构、具有相同结构但随机训练多次的网络以及具有不同结构的网络。此外,我们进一步研究了神经网络的过度自信现象及其对集成方法的影响。在我们所有的实验中,超级学习器在本研究中的所有集成方法中表现最佳。

相似文献

引用本文的文献

本文引用的文献

2
Super-Learning of an Optimal Dynamic Treatment Rule.最优动态治疗规则的超学习
Int J Biostat. 2016 May 1;12(1):305-32. doi: 10.1515/ijb-2015-0052.
5
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
Hierarchical ensemble of global and local classifiers for face recognition.用于人脸识别的全局和局部分类器的分层集成
IEEE Trans Image Process. 2009 Aug;18(8):1885-96. doi: 10.1109/TIP.2009.2021737. Epub 2009 Jun 23.
8
Super learner.超级学习者。
Stat Appl Genet Mol Biol. 2007;6:Article25. doi: 10.2202/1544-6115.1309. Epub 2007 Sep 16.
9
Super learning: an application to the prediction of HIV-1 drug resistance.超级学习:在预测HIV-1耐药性方面的应用。
Stat Appl Genet Mol Biol. 2007;6:Article7. doi: 10.2202/1544-6115.1240. Epub 2007 Feb 23.
10
Survival ensembles.生存集成法。
Biostatistics. 2006 Jul;7(3):355-73. doi: 10.1093/biostatistics/kxj011. Epub 2005 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验