TU Dortmund University, Technical Biochemistry, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
Appl Microbiol Biotechnol. 2020 Nov;104(22):9551-9563. doi: 10.1007/s00253-020-10798-3. Epub 2020 Oct 12.
Heterologous biosynthesis of tetrahydrocannabinolic acid (THCA) in yeast is a biotechnological process in Natural Product Biotechnology that was recently introduced. Based on heterologous genes from Cannabis sativa and Streptomyces spp. cloned into Saccharomyces cerevisiae, the heterologous biosynthesis was fully embedded as a proof of concept. Low titer and insufficient biocatalytic rate of most enzymes require systematic optimization of recombinant catalyst by protein engineering and consequent C-flux improvement of the yeast chassis for sufficient precursor (acetyl-CoA), energy (ATP), and NADH delivery. In this review basic principles of in silico analysis of anabolic pathways towards olivetolic acid (OA) and cannabigerolic acid (CBGA) are elucidated and discussed to identify metabolic bottlenecks. Based on own experimental results, yeasts are discussed as potential platform organisms to be introduced as potential cannabinoid biofactories. Especially feeding strategies and limitations in the committed mevalonate and olivetolic acid pathways are in focus of in silico and experimental studies to validate the scientific and commercial potential as a realistic alternative to the plant Cannabis sativa.Key points• First time critical review of the heterologous process for recombinant THCA/CBDA production and critical review of bottlenecks and limitations for a bioengineered technical process• Integrative approach of protein engineering, systems biotechnology, and biochemistry of yeast physiology and biosynthetic cannabinoid enzymes• Comparison of NphB and CsPT aromatic prenyltransferases as rate-limiting catalytic steps towards cannabinoids in yeast as platform organisms Graphical abstract.
在天然产物生物技术中,酵母中四氢大麻酸(THCA)的异源生物合成是最近引入的生物技术过程。基于从大麻和链霉菌属克隆到酿酒酵母中的异源基因,完全嵌入了异源生物合成作为概念验证。大多数酶的低产量和不足的生物催化率需要通过蛋白质工程对重组催化剂进行系统优化,并且随后对酵母底盘进行 C-通量改进,以提供足够的前体(乙酰辅酶 A)、能量(ATP)和 NADH。在这篇综述中,阐明并讨论了橄榄酸(OA)和大麻萜酚酸(CBGA)合成途径的计算机分析基本原理,以鉴定代谢瓶颈。基于自己的实验结果,讨论了酵母作为潜在的平台生物,作为潜在的大麻素生物工厂引入。特别是在甲羟戊酸和橄榄酸途径中的进料策略和限制是计算机和实验研究的焦点,以验证作为植物大麻(Cannabis sativa)的替代方案的科学和商业潜力。
关键点
• 首次对重组 THCA/CBDA 生产的异源过程进行了批判性回顾,并对生物工程技术过程的瓶颈和限制进行了批判性回顾
• 酵母生理和生物合成大麻素酶的蛋白质工程、系统生物技术和生物化学的综合方法
• 在酵母作为平台生物中比较 NphB 和 CsPT 芳香族 prenyltransferases 作为大麻素的限速催化步骤