Suppr超能文献

使用深度学习对 3D 脑磁共振图像进行分割和分类诊断阿尔茨海默病。

Alzheimer's diagnosis using deep learning in segmenting and classifying 3D brain MR images.

机构信息

Faculty of Mathematics and Computer Science, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.

Department of Computer Science, Sai Gon University, Ho Chi Minh City, Vietnam.

出版信息

Int J Neurosci. 2022 Jul;132(7):689-698. doi: 10.1080/00207454.2020.1835900. Epub 2020 Nov 4.

Abstract

BACKGROUND AND OBJECTIVES

Dementia is one of the brain diseases with serious symptoms such as memory loss, and thinking problems. According to the World Alzheimer Report 2016, in the world, there are 47 million people having dementia and it can be 131 million by 2050. There is no standard method to diagnose dementia, and consequently unable to access the treatment effectively. Hence, the computational diagnosis of the disease from brain Magnetic Resonance Image (MRI) scans plays an important role in supporting the early diagnosis. Alzheimer's Disease (AD), a common type of Dementia, includes problems related to disorientation, mood swings, not managing self-care, and behavioral issues. In this article, we present a new computational method to diagnosis Alzheimer's disease from 3D brain MR images.

METHODS

An efficient approach to diagnosis Alzheimer's disease from brain MRI scans is proposed comprising two phases: I) segmentation and II) classification, both based on deep learning. After the brain tissues are segmented by a model that combines Gaussian Mixture Model (GMM) and Convolutional Neural Network (CNN), a new model combining Extreme Gradient Boosting (XGBoost) and Support Vector Machine (SVM) is used to classify Alzheimer's disease based on the segmented tissues.

RESULTS

We present two evaluations for segmentation and classification. For comparison, the new method was evaluated using the AD-86 and AD-126 datasets leading to Dice 0.96 for segmentation in both datasets and accuracies 0.88, and 0.80 for classification, respectively.

CONCLUSION

Deep learning gives prominent results for segmentation and feature extraction in medical image processing. The combination of XGboost and SVM improves the results obtained.

摘要

背景与目的

痴呆症是一种脑部疾病,其症状严重,包括记忆力减退和思维问题。根据 2016 年世界阿尔茨海默病报告,全球有 4700 万人患有痴呆症,到 2050 年可能会达到 1.31 亿。目前还没有诊断痴呆症的标准方法,因此无法有效进行治疗。因此,从脑磁共振成像(MRI)扫描中计算诊断疾病在支持早期诊断方面发挥着重要作用。阿尔茨海默病(AD)是一种常见的痴呆症类型,包括与定向障碍、情绪波动、无法自理和行为问题有关的问题。在本文中,我们提出了一种从 3D 脑 MRI 图像诊断阿尔茨海默病的新计算方法。

方法

提出了一种从脑 MRI 扫描中诊断阿尔茨海默病的有效方法,该方法包括两个阶段:I)分割和 II)分类,两者均基于深度学习。在使用结合高斯混合模型(GMM)和卷积神经网络(CNN)的模型对脑组织进行分割后,使用结合极端梯度提升(XGBoost)和支持向量机(SVM)的新模型基于分割的组织进行分类。

结果

我们提出了两种分割和分类的评估方法。为了进行比较,新方法使用 AD-86 和 AD-126 数据集进行了评估,分别导致分割的 Dice 为 0.96 和 0.96,分类的准确率为 0.88 和 0.80。

结论

深度学习为医学图像处理中的分割和特征提取提供了出色的结果。XGBoost 和 SVM 的结合提高了获得的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验