Suppr超能文献

一种用于预测结直肠癌预后的五基因特征

A Five-gene Signature for Predicting the Prognosis of Colorectal Cancer.

作者信息

Hong Junfeng, Lin Xiangwu, Hu Xinyu, Wu Xiaolong, Fang Wenzheng

机构信息

Department of Ultrasound, Fuzhou General Hospital of Fujian Medical University, East Hospital Affiliated to Xiamen University (the 900th Hospital of The Joint Logistics Support Force of Chinese PLA), Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, China.

Department of Oncology, Fuzhou General Hospital of Fujian Medical University, East Hospital Affiliated to Xiamen University (the 900th Hospital of The Joint Logistics Support Force of Chinese PLA), Dongfang Hospital, Xiamen University, Fuzhou, Fujian, 350025, China.

出版信息

Curr Gene Ther. 2021;21(4):280-289. doi: 10.2174/1566523220666201012151803.

Abstract

BACKGROUND

Colorectal cancer (CRC) is a kind of tumor with high incidence and its treatment situation is still very difficult despite the constant renewal and development of treatment methods.

OBJECTIVE

To assist the prognosis, monitoring and survival of CRC patients with a model.

METHODS

In this study, we established a new prognostic model for CRC. Four groups of CRC data were accessed from the GEO database, and then differential analysis (logFoldChange>1, adjust- P<0.05) was carried out by using the limma package along with the RobustRankAggreg package used to identify the overlapping differentially expressed genes (DEGs). Univariate and multivariate Cox regression analyses were performed on the DEGs to screen the genes related to the patient's prognosis, and a five-gene prognostic prediction model (including RPX, CXCL13, MMP10, FABP4 and CLDN23) was constructed. Then, we further plotted ROC curves to evaluate the predictive performance of the five-gene prognostic signature in the TCGA data sets (the AUC values of 1, 3, 5-year survival were 0.68, 0.632, 0.675, respectively) and an external independent data set GSE2962 (the AUC values of 1, 3, 5-year survival were 0.689, 0.702, 0.631, respectively).

RESULTS

The results showed that the model could effectively predict the prognosis of CRC patients, which provides a robust predictive model for the prognosis of CRC patients.

CONCLUSION

The model could effectively predict the prognosis of CRC patients, which provides a robust predictive model for the prognosis of CRC patients.

摘要

背景

结直肠癌(CRC)是一种高发性肿瘤,尽管治疗方法不断更新和发展,但其治疗情况仍然非常困难。

目的

用一种模型辅助结直肠癌患者的预后、监测和生存情况。

方法

在本研究中,我们建立了一种新的结直肠癌预后模型。从基因表达综合数据库(GEO数据库)获取四组结直肠癌数据,然后使用limma软件包进行差异分析(logFoldChange>1,校正P<0.05),同时使用RobustRankAggreg软件包来识别重叠的差异表达基因(DEGs)。对这些差异表达基因进行单变量和多变量Cox回归分析,以筛选出与患者预后相关的基因,并构建了一个包含五个基因的预后预测模型(包括RPX、CXCL13、MMP10、FABP4和CLDN23)。然后,我们进一步绘制ROC曲线,以评估五基因预后特征在癌症基因组图谱(TCGA)数据集(1、3、5年生存率的AUC值分别为0.68、0.632、0.675)和一个外部独立数据集GSE2962(1、3、5年生存率的AUC值分别为0.689、0.702、0.631)中的预测性能。

结果

结果表明,该模型能够有效预测结直肠癌患者的预后,为结直肠癌患者的预后提供了一个可靠的预测模型。

结论

该模型能够有效预测结直肠癌患者的预后,为结直肠癌患者的预后提供了一个可靠的预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验