Suppr超能文献

CA1 中间神经元中多巴胺依赖的 QR2 通路激活增强新记忆形成。

Dopamine-Dependent QR2 Pathway Activation in CA1 Interneurons Enhances Novel Memory Formation.

机构信息

Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Haifa, 3498838, Israel.

Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Haifa, 3498838, Israel.

出版信息

J Neurosci. 2020 Nov 4;40(45):8698-8714. doi: 10.1523/JNEUROSCI.1243-20.2020. Epub 2020 Oct 12.

Abstract

The formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation. Namely, following novel information acquisition, quinone reductase 2 (QR2) is suppressed by miRNA-182 (miR-182) in the CA1 region of the hippocampus via dopamine D1 receptor (D1R) activation, a process largely facilitated by locus coeruleus activity. This pathway activation reduces ROS generated by QR2 enzymatic activity, a process that alters the intrinsic properties of CA1 interneurons 3 h following learning, in a form of oxidative eustress. Interestingly, novel experience decreases QR2 expression predominately in inhibitory interneurons. Additionally, we find that in aged animals this newly described QR2 pathway is chronically under activated, resulting in miR-182 underexpression and QR2 overexpression. This leads to accumulative oxidative stress, which can be seen in CA1 via increased levels of oxidized, inactivated potassium channel Kv2.1, which undergoes disulfide bridge oligomerization. This newly described interneuron-specific molecular pathway lies alongside the known mRNA translation-dependent processes necessary for long-term memory formation, entrained by dopamine in CA1. It is a process crucial for the distinguishing features of novel memory, and points to a promising new target for memory enhancement in aging and age-dependent diseases. One way in which evolution dictates which sensory information will stabilize as an internal representation, relies on information novelty. Dopamine is a central neuromodulator involved in this process in the mammalian hippocampus. Here, we describe for the first time a dopamine D1 receptor-dependent quinone reductase 2 pathway in interneurons. This is a targeted redox event necessary to delineate a novel experience to a robust long-term internal representation. Activation of this pathway alone can explain the effect novelty has on "flashbulb" memories, and it can become dysfunctional with age and diseases, such as Alzheimer's disease.

摘要

新体验记忆的形成是一种关键的认知能力。形成新记忆的能力对与年龄相关的病理和疾病很敏感,而长期的代谢应激是一个主要的促成因素。目前,我们描述了一种在雄性小鼠海马体内的多巴胺依赖性氧化还原调节途径,该途径促进记忆巩固。即在新信息获取后,通过多巴胺 D1 受体(D1R)的激活,海马 CA1 区的醌还原酶 2(QR2)被 microRNA-182(miR-182)抑制,这一过程在蓝斑核活性的帮助下很大程度上得到促进。这种途径的激活减少了 QR2 酶活性产生的 ROS,这一过程改变了学习后 3 小时 CA1 中间神经元的固有特性,形成一种氧化应激。有趣的是,新体验主要降低了抑制性中间神经元中的 QR2 表达。此外,我们发现,在老年动物中,这种新描述的 QR2 途径长期被激活,导致 miR-182 表达不足和 QR2 表达过度。这导致累积的氧化应激,可以在 CA1 中看到,表现为氧化失活的钾通道 Kv2.1 水平升高,该通道发生二硫键寡聚化。这种新描述的中间神经元特异性分子途径与已知的 CA1 中多巴胺依赖的 mRNA 翻译过程一起,为长期记忆形成提供了必要的条件。这是新记忆区分特征的关键过程,并为衰老和与年龄相关的疾病中的记忆增强指出了一个有前途的新目标。进化决定哪些感觉信息将作为内部表示稳定下来的一种方式,依赖于信息的新颖性。多巴胺是哺乳动物海马体中参与这一过程的中枢神经调节剂。在这里,我们首次描述了一种多巴胺 D1 受体依赖性醌还原酶 2 途径在中间神经元中的作用。这是一个有针对性的氧化还原事件,对于将新体验描绘成一种强大的长期内部表示是必要的。仅激活这条途径就可以解释新颖性对“闪光灯记忆”的影响,而且随着年龄的增长和阿尔茨海默病等疾病的发展,它可能会出现功能障碍。

相似文献

8
Locus coeruleus and dopaminergic consolidation of everyday memory.蓝斑与日常记忆的多巴胺能巩固
Nature. 2016 Sep 15;537(7620):357-362. doi: 10.1038/nature19325. Epub 2016 Sep 7.

引用本文的文献

本文引用的文献

8
Hippocampal GABAergic Inhibitory Interneurons.海马体γ-氨基丁酸能抑制性中间神经元
Physiol Rev. 2017 Oct 1;97(4):1619-1747. doi: 10.1152/physrev.00007.2017.
9
Non-kinase targets of protein kinase inhibitors.蛋白激酶抑制剂的非激酶靶点。
Nat Rev Drug Discov. 2017 Jun;16(6):424-440. doi: 10.1038/nrd.2016.266. Epub 2017 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验