Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, USA.
Nat Commun. 2017 Apr 6;8:15039. doi: 10.1038/ncomms15039.
Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5-4 Hz), theta (4-12 Hz) and ripple (150-250 Hz) oscillations; and (2) stabilization of CA1 neurons' functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.
海马区 CA1 的活动对于巩固情景记忆至关重要,但 CA1 活动模式如何驱动记忆形成尚不清楚。我们发现,在单次情境恐惧条件反射(CFC)后的几个小时内,快速放电中间神经元(通常表达 Parvalbumin(PV))与 CA1 网络振荡的同步性更高。CFC 后抑制 PV+中间神经元会阻止恐惧记忆的巩固。这种效应与正常巩固过程中两种网络变化的丧失有关:(1)增强的睡眠相关的 delta(0.5-4Hz)、theta(4-12Hz)和涟漪(150-250Hz)振荡;(2)CA1 神经元功能连接模式的稳定。PV+中间神经元的节律性激活增加了 CA1 网络的同步性,并导致神经元之间的功能连接强度和稳定性持续增加。我们的研究结果表明,在学习后立即,PV+中间神经元驱动 CA1 振荡和 CA1 神经元集群的再激活,这直接促进了网络的可塑性和长期记忆的形成。