Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Department of Ophthalmology, New York University Langone Health, New York, NY, 10016, USA.
Sci Rep. 2020 Oct 12;10(1):16965. doi: 10.1038/s41598-020-74131-8.
Phase unwrapping is one of the major challenges in multiple branches of science that extract three-dimensional information of objects from wrapped signals. In several applications, it is important to extract the unwrapped information with minimal signal resolution degradation. However, most of the denoising techniques for unwrapping are designed to operate on the entire phase map to remove a limited number of phase residues, and therefore they significantly degrade critical information contained in the image. In this paper, we present a novel, smart, and automatic filtering technique for locally minimizing the number of phase residues in noisy wrapped holograms, based on the phasor average filtering (PAF) of patches around each residue point. Both patch sizes and PAF filters are increased in an iterative algorithm to minimize the number of residues and locally restrict the artifacts caused by filtering to the pixels around the residue pixels. Then, the improved wrapped phase can be unwrapped using a simple phase unwrapping technique. The feasibility of our method is confirmed by filtering, unwrapping, and enhancing the quality of a noisy hologram of neurons; the intensity distribution of the spatial frequencies demonstrates a 40-fold improvement, with respect to previous techniques, in preserving the higher frequencies.
相位解缠是多个科学分支中的主要挑战之一,这些科学分支从包裹的信号中提取物体的三维信息。在许多应用中,以最小的信号分辨率降级来提取未包裹的信息是很重要的。然而,大多数用于解缠的去噪技术旨在对整个相位图进行操作,以去除有限数量的相位残余物,因此它们会显著降低图像中包含的关键信息。在本文中,我们提出了一种新颖的、智能的、自动的滤波技术,用于在有噪声的包裹全息图中局部最小化相位残余物的数量,该技术基于每个残余点周围的相位平均滤波(PAF)。在迭代算法中,同时增加了补丁的大小和 PAF 滤波器,以最小化残余物的数量,并将滤波引起的伪像局部限制在残余像素周围的像素上。然后,使用简单的相位解缠技术对改进后的包裹相位进行解缠。通过过滤、解缠和增强神经元的噪声全息图的质量,验证了我们方法的可行性;空间频率的强度分布在保留更高频率方面相对于以前的技术提高了 40 倍。