Suppr超能文献

金融数据与情绪数据之间的信息论因果关系检测

Information Theoretic Causality Detection between Financial and Sentiment Data.

作者信息

Scaramozzino Roberta, Cerchiello Paola, Aste Tomaso

机构信息

Department of Economics and Management, University of Pavia, Via San Felice 7, 27100 Pavia, Italy.

Department of Computer Science, University College London, Gower Street, London WC1E 6EA, UK.

出版信息

Entropy (Basel). 2021 May 16;23(5):621. doi: 10.3390/e23050621.

Abstract

The interaction between the flow of sentiment expressed on blogs and media and the dynamics of the stock market prices are analyzed through an information-theoretic measure, the transfer entropy, to quantify causality relations. We analyzed daily stock price and daily social media sentiment for the top 50 companies in the Standard & Poor (S&P) index during the period from November 2018 to November 2020. We also analyzed news mentioning these companies during the same period. We found that there is a causal flux of information that links those companies. The largest fraction of significant causal links is between prices and between sentiments, but there is also significant causal information which goes both ways from sentiment to prices and from prices to sentiment. We observe that the strongest causal signal between sentiment and prices is associated with the Tech sector.

摘要

通过一种信息论测度——转移熵,来分析博客和媒体上表达的情绪流与股票市场价格动态之间的相互作用,以量化因果关系。我们分析了2018年11月至2020年11月期间标准普尔(S&P)指数中排名前50的公司的每日股价和每日社交媒体情绪。我们还分析了同一时期提及这些公司的新闻。我们发现存在连接这些公司的信息因果流。显著因果联系的最大部分存在于价格之间和情绪之间,但也存在从情绪到价格以及从价格到情绪的双向显著因果信息。我们观察到,情绪与价格之间最强的因果信号与科技板块相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bfa/8156204/7eb8ca762934/entropy-23-00621-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验