Suppr超能文献

深度关联代谢物分析:一种基于图深度学习方法的疾病相关代谢物识别计算方法。

Deep-DRM: a computational method for identifying disease-related metabolites based on graph deep learning approaches.

机构信息

Department of Computer Science at the Harbin Institute of Technology.

Department of Life Science at the Harbin Institute of Technology.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa212.

Abstract

MOTIVATION

The functional changes of the genes, RNAs and proteins will eventually be reflected in the metabolic level. Increasing number of researchers have researched mechanism, biomarkers and targeted drugs by metabolites. However, compared with our knowledge about genes, RNAs, and proteins, we still know few about diseases-related metabolites. All the few existed methods for identifying diseases-related metabolites ignore the chemical structure of metabolites, fail to recognize the association pattern between metabolites and diseases, and fail to apply to isolated diseases and metabolites.

RESULTS

In this study, we present a graph deep learning based method, named Deep-DRM, for identifying diseases-related metabolites. First, chemical structures of metabolites were used to calculate similarities of metabolites. The similarities of diseases were obtained based on their functional gene network and semantic associations. Therefore, both metabolites and diseases network could be built. Next, Graph Convolutional Network (GCN) was applied to encode the features of metabolites and diseases, respectively. Then, the dimension of these features was reduced by Principal components analysis (PCA) with retainment 99% information. Finally, Deep neural network was built for identifying true metabolite-disease pairs (MDPs) based on these features. The 10-cross validations on three testing setups showed outstanding AUC (0.952) and AUPR (0.939) of Deep-DRM compared with previous methods and similar approaches. Ten of top 15 predicted associations between diseases and metabolites got support by other studies, which suggests that Deep-DRM is an efficient method to identify MDPs.

CONTACT

liangcheng@hrbmu.edu.cn.

AVAILABILITY AND IMPLEMENTATION

https://github.com/zty2009/GPDNN-for-Identify-ing-Disease-related-Metabolites.

摘要

动机

基因、RNA 和蛋白质的功能变化最终将反映在代谢水平上。越来越多的研究人员通过代谢物研究机制、生物标志物和靶向药物。然而,与我们对基因、RNA 和蛋白质的了解相比,我们对疾病相关代谢物的了解仍然很少。现有的识别疾病相关代谢物的方法忽略了代谢物的化学结构,未能识别代谢物与疾病之间的关联模式,也未能应用于孤立的疾病和代谢物。

结果

在这项研究中,我们提出了一种基于图深度学习的方法,称为 Deep-DRM,用于识别疾病相关代谢物。首先,利用代谢物的化学结构计算代谢物之间的相似度。根据其功能基因网络和语义关联获得疾病的相似度。因此,可以构建代谢物和疾病网络。接下来,应用图卷积网络(GCN)分别对代谢物和疾病的特征进行编码。然后,通过主成分分析(PCA)保留 99%的信息来降低这些特征的维度。最后,基于这些特征构建深度神经网络来识别真正的代谢物-疾病对(MDP)。在三种测试设置的 10 次交叉验证中,Deep-DRM 与以前的方法和类似方法相比,表现出出色的 AUC(0.952)和 AUPR(0.939)。在预测的 15 个疾病与代谢物之间的关联中,有 10 个得到了其他研究的支持,这表明 Deep-DRM 是一种识别 MDP 的有效方法。

联系方式

liangcheng@hrbmu.edu.cn

可用性和实现

https://github.com/zty2009/GPDNN-for-Identify-ing-Disease-related-Metabolites。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验