Suppr超能文献

相似文献

2
Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data.
AJR Am J Roentgenol. 2019 Sep;213(3):592-601. doi: 10.2214/AJR.19.21082. Epub 2019 May 23.
6
Comparison of Quantitative Liver US and MRI in Patients with Liver Disease.
Radiology. 2022 Sep;304(3):660-669. doi: 10.1148/radiol.212995. Epub 2022 May 24.
7
Magnetic resonance elastography SE-EPI vs GRE sequences at 3T in a pediatric population with liver disease.
Abdom Radiol (NY). 2019 Mar;44(3):894-902. doi: 10.1007/s00261-018-1884-6.
8
Respiratory-triggered spin-echo echo-planar imaging-based mr elastography for evaluating liver stiffness.
J Magn Reson Imaging. 2019 Aug;50(2):391-396. doi: 10.1002/jmri.26610. Epub 2018 Dec 24.
10
Normal range for MR elastography measured liver stiffness in children without liver disease.
J Magn Reson Imaging. 2020 Mar;51(3):919-927. doi: 10.1002/jmri.26905. Epub 2019 Aug 27.

引用本文的文献

2
Recent Advances in Explainable Artificial Intelligence for Magnetic Resonance Imaging.
Diagnostics (Basel). 2023 Apr 27;13(9):1571. doi: 10.3390/diagnostics13091571.
3
ENRICHing medical imaging training sets enables more efficient machine learning.
J Am Med Inform Assoc. 2023 May 19;30(6):1079-1090. doi: 10.1093/jamia/ocad055.
4
A primer on texture analysis in abdominal radiology.
Abdom Radiol (NY). 2022 Sep;47(9):2972-2985. doi: 10.1007/s00261-021-03359-3. Epub 2021 Nov 26.
5
The current and future roles of artificial intelligence in pediatric radiology.
Pediatr Radiol. 2022 Oct;52(11):2065-2073. doi: 10.1007/s00247-021-05086-9. Epub 2021 May 27.

本文引用的文献

1
Normal range for MR elastography measured liver stiffness in children without liver disease.
J Magn Reson Imaging. 2020 Mar;51(3):919-927. doi: 10.1002/jmri.26905. Epub 2019 Aug 27.
2
Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data.
AJR Am J Roentgenol. 2019 Sep;213(3):592-601. doi: 10.2214/AJR.19.21082. Epub 2019 May 23.
3
Current Imaging Techniques for Noninvasive Staging of Hepatic Fibrosis.
AJR Am J Roentgenol. 2019 Jul;213(1):77-89. doi: 10.2214/AJR.19.21144. Epub 2019 Apr 11.
4
Putting it all together: established and emerging MRI techniques for detecting and measuring liver fibrosis.
Pediatr Radiol. 2018 Aug;48(9):1256-1272. doi: 10.1007/s00247-018-4083-2. Epub 2018 Aug 4.
6
Diagnostic Performance of MR Elastography for Liver Fibrosis in Children and Young Adults with a Spectrum of Liver Diseases.
Radiology. 2018 Jun;287(3):824-832. doi: 10.1148/radiol.2018172099. Epub 2018 Feb 22.
7
MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
J Digit Imaging. 2018 Aug;31(4):513-519. doi: 10.1007/s10278-018-0053-3.
8
High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision.
Radiology. 2018 Mar;286(3):810-818. doi: 10.1148/radiol.2017170549. Epub 2017 Oct 17.
9
Use of Liver Imaging and Biopsy in Clinical Practice.
N Engl J Med. 2017 Aug 24;377(8):756-768. doi: 10.1056/NEJMra1610570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验