Suppr超能文献

深度学习算法在药物发现中的应用范围。

Spectrum of deep learning algorithms in drug discovery.

机构信息

Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.

Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran.

出版信息

Chem Biol Drug Des. 2020 Sep;96(3):886-901. doi: 10.1111/cbdd.13674.

Abstract

Deep learning (DL) algorithms are a subset of machine learning algorithms with the aim of modeling complex mapping between a set of elements and their classes. In parallel to the advance in revealing the molecular bases of diseases, a notable innovation has been undertaken to apply DL in data/libraries management, reaction optimizations, differentiating uncertainties, molecule constructions, creating metrics from qualitative results, and prediction of structures or interactions. From source identification to lead discovery and medicinal chemistry of the drug candidate, drug delivery, and modification, the challenges can be subjected to artificial intelligence algorithms to aid in the generation and interpretation of data. Discovery and design approach, both demand automation, large data management and data fusion by the advance in high-throughput mode. The application of DL can accelerate the exploration of drug mechanisms, finding novel indications for existing drugs (drug repositioning), drug development, and preclinical and clinical studies. The impact of DL in the workflow of drug discovery, design, and their complementary tools are highlighted in this review. Additionally, the type of DL algorithms used for this purpose, and their pros and cons along with the dominant directions of future research are presented.

摘要

深度学习(DL)算法是机器学习算法的一个子集,旨在对一组元素及其类之间的复杂映射进行建模。随着对疾病分子基础的揭示取得进展,一项显著的创新举措是应用 DL 进行数据/库管理、反应优化、区分不确定性、分子构建、从定性结果创建指标以及预测结构或相互作用。从源头识别到先导化合物发现和候选药物的药物化学、药物输送和修饰,都可以将这些挑战交给人工智能算法来辅助数据的生成和解释。发现和设计方法都需要自动化、大数据管理和高通量模式的进步进行数据融合。DL 的应用可以加速药物机制的探索,为现有药物寻找新的适应症(药物重定位)、药物开发以及临床前和临床研究。本文综述了 DL 在药物发现、设计及其互补工具的工作流程中的应用。此外,还介绍了为此目的而使用的 DL 算法的类型,以及它们的优缺点,以及未来研究的主导方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验