Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
Vathes LLC, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence and Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Neuron. 2020 Oct 14;108(1):66-92. doi: 10.1016/j.neuron.2020.09.043.
We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.
我们提出了一种新的密集型脑功能成像范式,以克服现有方法的局限性。我们称之为“集成神经光子学”;它结合了基于微芯片的集成光子学和电子电路的最新进展,以及光遗传学的进展。这种方法有可能实现无透镜的脑内功能成像,从而实现对脑活动的密集、大规模刺激和记录,具有任意深度的细胞分辨率。我们对几种用于植入式探针阵列模块的 3D 原型结构进行了计算研究,这些模块旨在提供快速和密集的单细胞分辨率(例如,在包含约 10 万个神经元的 1 毫米体积的小鼠皮层内)。我们描述了实现集成神经光子成像模块的进展,这些模块可以使用当前的半导体代工厂协议大规模生产用于芯片制造。多个模块的植入可以覆盖更大的脑区。