Suppr超能文献

CHNHPbBrI量子点增强体相结晶和界面电荷转移以实现高效稳定的钙钛矿太阳能电池

CHNHPbBrI Quantum Dots Enhance Bulk Crystallization and Interface Charge Transfer for Efficient and Stable Perovskite Solar Cells.

作者信息

Yin Junyang, Yuan Yujie, Ni Jian, Guan Jiayi, Zhou Xiaojun, Liu Yue, Ding Yi, Cai Hongkun, Zhang Jianjun

机构信息

School of Electrical & Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China.

College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

出版信息

ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48861-48873. doi: 10.1021/acsami.0c14191. Epub 2020 Oct 15.

Abstract

Obtaining a perovskite light-absorbing layer with good crystallization, low defect concentration, good stability, and well-matched energy levels is critical to obtaining high-efficiency perovskite solar cells (PSCs). Here, a hybrid PSC with a graded band gap is explored using MAPbBr (MA = CHNH) and MAPbBrI quantum dots (QDs) as component cells. We have creatively designed a solar cell device with a double-QD structure [indium tin oxide (ITO)/SnO/perovskite:MAPbBr QDs/MAPbBrI QDs/Spiro-OMeTAD/Au]. A better crystal film of the perovskite absorption layer can be obtained because the MAPbBr QDs are doped in an antisolvent, which induces nucleation and growth in the polycrystalline perovskite. In addition, we expect that digestive ripening occurred in the crystallization, and the oleic acid ligands on the surface of the QDs disintegrate during the doping process and transfer to the surface of the perovskite absorption layer finally; it follows that the hydrophobicity and stability of the perovskite film are greatly enhanced. Moreover, a thin film of MAPbBrI QDs is introduced between the perovskite absorption layer and the hole layer, acting as an energy-level ladder, which leads to well-matched energy levels, an increase in fill factor (FF), and an enhanced hole transport capability. In particular, the mechanism of the crystallization process involving the effect of oleic acid ligands on the interior and surface of the perovskite film is fully discussed here. The final research results from the PSCs show that both high efficiency and long-term stability are achieved successfully by this design strategy.

摘要

获得具有良好结晶性、低缺陷浓度、良好稳定性和能级匹配良好的钙钛矿光吸收层对于获得高效钙钛矿太阳能电池(PSC)至关重要。在此,以MAPbBr(MA = CHNH)和MAPbBrI量子点(QD)作为组成电池,探索了一种具有渐变带隙的混合PSC。我们创造性地设计了一种具有双量子点结构的太阳能电池器件[氧化铟锡(ITO)/SnO/钙钛矿:MAPbBr量子点/MAPbBrI量子点/Spiro-OMeTAD/金]。由于MAPbBr量子点掺杂在反溶剂中,可诱导多晶钙钛矿中的成核和生长,从而获得更好的钙钛矿吸收层晶体膜。此外,我们预计在结晶过程中发生了消化熟化,量子点表面的油酸配体在掺杂过程中分解并最终转移到钙钛矿吸收层表面;由此,钙钛矿膜的疏水性和稳定性大大增强。此外,在钙钛矿吸收层和空穴层之间引入了一层MAPbBrI量子点薄膜,作为能级阶梯,导致能级匹配良好、填充因子(FF)增加以及空穴传输能力增强。特别是,这里充分讨论了涉及油酸配体对钙钛矿膜内部和表面影响的结晶过程机制。PSC的最终研究结果表明,通过这种设计策略成功实现了高效率和长期稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验