Suppr超能文献

近纳腔金等离子体纳米结构用于生物分析应用的合成研究进展。

Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications.

机构信息

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seong-buk gu, Seoul, 02841, Republic of Korea.

出版信息

Adv Mater. 2020 Dec;32(51):e2002219. doi: 10.1002/adma.202002219. Epub 2020 Oct 15.

Abstract

Plasmonic nanogap-enhanced Raman scattering has attracted considerable attention in the fields of Raman-based bioanalytical applications and materials science. Various strategies have been proposed to prepare nanostructures with an inter- or intra-nanogap for fundamental study models or applications. This report focuses on recent advances in synthetic methods to fabricate intra-nanogap structures with diverse dimensions, with detailed focus on the theory and bioanalytical applications. Synthetic strategies ranging from the use of a silica layer to small molecules, the use of polymers and galvanic replacement, are extensively investigated. Furthermore, various core structures, such as spherical, rod-, and cube-shaped, are widely studied, and greatly expand the diversity of plasmonic nanostructures with an intra-nanogap. Theoretical calculations, ranging from the first plasmonic hybridization model that is applied to a concentric Au-SiO -Au nanosphere to the modern quantum corrected model, have evolved to accurately describe the plasmonic resonance property in concentric core-shell nanostructures with a subnanometer nanogap. The greatly enhanced and uniform Raman responses from the localized Raman reporter in the built-in nanogap have made it possible to achieve promising probes with an extraordinary high sensitivity in various formats, such as biomolecule detection, high-resolution cell imaging, and an in vivo imaging application.

摘要

等离子体纳米间隙增强拉曼散射在基于拉曼的生物分析应用和材料科学领域引起了相当大的关注。已经提出了各种策略来制备具有介纳米间隙或内纳米间隙的纳米结构,用于基础研究模型或应用。本报告重点介绍了制备具有不同尺寸的内纳米间隙结构的合成方法的最新进展,详细介绍了理论和生物分析应用。广泛研究了从使用二氧化硅层到小分子、使用聚合物和电置换的各种合成策略。此外,还广泛研究了各种核结构,如球形、棒形和立方体形,极大地扩展了具有内纳米间隙的等离子体纳米结构的多样性。理论计算从最初应用于同心 Au-SiO2-Au 纳米球的第一等离子体杂化模型发展到现代量子修正模型,以准确描述具有亚纳米纳米间隙的同心核壳纳米结构中的等离子体共振特性。内置纳米间隙中局域拉曼报告器的大大增强和均匀的拉曼响应,使得在各种格式(如生物分子检测、高分辨率细胞成像和体内成像应用)中实现具有非凡高灵敏度的有前途的探针成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验