Suppr超能文献

基于结构的深度学习指导下的新型功能获得性突变的发现。

Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning.

机构信息

Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States.

The Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

ACS Synth Biol. 2020 Nov 20;9(11):2927-2935. doi: 10.1021/acssynbio.0c00345. Epub 2020 Oct 16.

Abstract

Despite the promise of deep learning accelerated protein engineering, examples of such improved proteins are scarce. Here we report that a 3D convolutional neural network trained to associate amino acids with neighboring chemical microenvironments can guide identification of novel gain-of-function mutations that are not predicted by energetics-based approaches. Amalgamation of these mutations improved protein function across three diverse proteins by at least 5-fold. Furthermore, this model provides a means to interrogate the chemical space within protein microenvironments and identify specific chemical interactions that contribute to the gain-of-function phenotypes resulting from individual mutations.

摘要

尽管深度学习在加速蛋白质工程方面具有广阔前景,但此类改良蛋白质的例子却十分稀少。在这里,我们报告称,一种经过训练可将氨基酸与相邻化学微环境相关联的 3D 卷积神经网络,可以指导鉴定新型功能获得性突变,而这些突变是基于能量的方法所无法预测的。这些突变的融合至少将三种不同蛋白质的功能提高了 5 倍。此外,该模型还提供了一种方法来研究蛋白质微环境中的化学空间,并确定导致单个突变产生功能获得性表型的特定化学相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验