School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281.
Santa Fe Institute, Santa Fe, NM 87501.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2106655119.
All life on Earth is unified by its use of a shared set of component chemical compounds and reactions, providing a detailed model for universal biochemistry. However, this notion of universality is specific to known biochemistry and does not allow quantitative predictions about examples not yet observed. Here, we introduce a more generalizable concept of biochemical universality that is more akin to the kind of universality found in physics. Using annotated genomic datasets including an ensemble of 11,955 metagenomes, 1,282 archaea, 11,759 bacteria, and 200 eukaryotic taxa, we show how enzyme functions form universality classes with common scaling behavior in their relative abundances across the datasets. We verify that these scaling laws are not explained by the presence of compounds, reactions, and enzyme functions shared across known examples of life. We demonstrate how these scaling laws can be used as a tool for inferring properties of ancient life by comparing their predictions with a consensus model for the last universal common ancestor (LUCA). We also illustrate how network analyses shed light on the functional principles underlying the observed scaling behaviors. Together, our results establish the existence of a new kind of biochemical universality, independent of the details of life on Earth's component chemistry, with implications for guiding our search for missing biochemical diversity on Earth or for biochemistries that might deviate from the exact chemical makeup of life as we know it, such as at the origins of life, in alien environments, or in the design of synthetic life.
地球上所有的生命都统一使用一套共享的化合物和反应,为普遍的生物化学提供了详细的模型。然而,这种普遍性的概念是特定于已知的生物化学的,不能对尚未观察到的例子进行定量预测。在这里,我们引入了一个更具普遍性的生物化学概念,它更类似于物理学中发现的那种普遍性。我们使用注释基因组数据集,包括 11955 个宏基因组、1282 个古菌、11759 个细菌和 200 个真核生物类群,展示了酶功能如何在数据集之间的相对丰度上形成具有共同缩放行为的普遍性类别。我们验证了这些缩放定律不能用生命已知例子中共同存在的化合物、反应和酶功能来解释。我们通过将这些缩放定律的预测与最后普遍共同祖先 (LUCA) 的共识模型进行比较,展示了如何将这些缩放定律用作推断古代生命性质的工具。我们还说明了网络分析如何揭示观察到的缩放行为背后的功能原理。总之,我们的研究结果确立了一种新的生物化学普遍性的存在,这种普遍性独立于地球生命成分化学的细节,对指导我们寻找地球上缺失的生物化学多样性,或者寻找可能偏离我们所知道的生命确切化学组成的生物化学,如生命起源、外星环境或合成生命的设计,具有重要意义。