Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel.
Curr Biol. 2020 Dec 21;30(24):4882-4895.e6. doi: 10.1016/j.cub.2020.09.043. Epub 2020 Oct 15.
The main limitation on axon regeneration in the peripheral nervous system (PNS) is the slow rate of regrowth. We recently reported that nerve regeneration can be accelerated by axonal G3BP1 granule disassembly, releasing axonal mRNAs for local translation to support axon growth. Here, we show that G3BP1 phosphorylation by casein kinase 2α (CK2α) triggers G3BP1 granule disassembly in injured axons. CK2α activity is temporally and spatially regulated by local translation of Csnk2a1 mRNA in axons after injury, but this requires local translation of mTor mRNA and buffering of the elevated axonal Ca that occurs after axotomy. CK2α's appearance in axons after PNS nerve injury correlates with disassembly of axonal G3BP1 granules as well as increased phospho-G3BP1 and axon growth, although depletion of Csnk2a1 mRNA from PNS axons decreases regeneration and increases G3BP1 granules. Phosphomimetic G3BP1 shows remarkably decreased RNA binding in dorsal root ganglion (DRG) neurons compared with wild-type and non-phosphorylatable G3BP1; combined with other studies, this suggests that CK2α-dependent G3BP1 phosphorylation on Ser 149 after axotomy releases axonal mRNAs for translation. Translation of axonal mRNAs encoding some injury-associated proteins is known to be increased with Ca elevations, and using a dual fluorescence recovery after photobleaching (FRAP) reporter assay for axonal translation, we see that translational specificity switches from injury-associated protein mRNA translation to CK2α translation with endoplasmic reticulum (ER) Ca release versus cytoplasmic Ca chelation. Our results point to axoplasmic Ca concentrations as a determinant for the temporal specificity of sequential translational activation of different axonal mRNAs as severed axons transition from injury to regenerative growth.
周围神经系统 (PNS) 中轴突再生的主要限制因素是再生速度缓慢。我们最近报道,通过轴突 G3BP1 颗粒解体可以加速神经再生,释放轴突 mRNA 进行局部翻译,以支持轴突生长。在这里,我们表明,钙粘蛋白激酶 2α(CK2α)对 G3BP1 的磷酸化触发损伤轴突中 G3BP1 颗粒的解体。CK2α 的活性在损伤后轴突中 Csnk2a1 mRNA 的局部翻译中受到时空调节,但这需要 mTor mRNA 的局部翻译和轴突切割后升高的轴突 Ca 的缓冲。CK2α 在 PNS 神经损伤后的轴突中出现与轴突 G3BP1 颗粒的解体以及磷酸化 G3BP1 和轴突生长的增加相关,尽管 PNS 轴突中 Csnk2a1 mRNA 的耗竭会降低再生并增加 G3BP1 颗粒。与野生型和不可磷酸化的 G3BP1 相比,磷酸化 G3BP1 在背根神经节 (DRG) 神经元中的 RNA 结合能力显著降低;结合其他研究,这表明轴突切割后 CK2α 依赖性 G3BP1 丝氨酸 149 的磷酸化释放用于翻译的轴突 mRNA。已知某些与损伤相关的蛋白质的轴突 mRNA 的翻译会随着 Ca 升高而增加,并且使用轴突翻译的双荧光恢复后光漂白 (FRAP) 报告基因测定,我们发现翻译特异性从与损伤相关的蛋白质 mRNA 翻译转换为 CK2α 翻译,与内质网 (ER) Ca 释放与细胞质 Ca 螯合相比。我们的研究结果表明,轴浆 Ca 浓度是不同轴突 mRNA 顺序激活的时间特异性的决定因素,因为切断的轴突从损伤过渡到再生性生长。