Department of Biologic and Materials Science, School of Dentistry, University of Michigan, Ann Arbor, USA.
Department of Chemistry, University of Michigan, Ann Arbor, USA.
Acta Biomater. 2020 Dec;118:215-232. doi: 10.1016/j.actbio.2020.09.052. Epub 2020 Oct 13.
Biomimetic bone regeneration methods which demonstrate both clinical and manufacturing feasibility, as alternatives to autogenic or allogenic bone grafting, remain a challenge to the field of tissue engineering. Here, we report the pro-osteogenic capacity of exosomes derived from human dental pulp stem cells (hDPSCs) to facilitate bone marrow stromal cell (BMSC) differentiation and mineralization. To support their delivery, we engineered a biodegradable polymer delivery platform to improve the encapsulation and the controlled release of exosomes on a tunable time scale from poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) triblock copolymer microspheres. Our delivery platform integrates within three-dimensional tissue engineering scaffolds to enable a straightforward surgical insertion into a mouse calvarial defect. We demonstrate the osteogenic potential of these functional constructs in vitro and in vivo. Controlled release of osteogenic hDPSC-derived exosomes facilitates osteogenic differentiation of BMSCs, leading to mineralization to a degree which is comparable to exogenous administration of the same exosomes in human and mouse BMSCs. By recruiting endogenous cells to the defects and facilitating their differentiation, the controlled release of osteogenic exosomes from a tissue engineering scaffold demonstrates accelerated bone healing in vivo at 8 weeks. Exosomes recapitulate the advantageous properties of mesenchymal stem/progenitor cells, without manufacturing or immunogenic concerns associated with transplantation of exogenous cells. This biomaterial platform enables exosome-mediated bone regeneration in an efficacious and clinically relevant way.
仿生骨再生方法在临床上和制造上都具有可行性,可作为自体或同种异体骨移植物的替代品,这仍然是组织工程领域的一个挑战。在这里,我们报告了人牙髓干细胞(hDPSC)来源的外泌体促进骨髓基质细胞(BMSC)分化和矿化的成骨能力。为了支持它们的传递,我们设计了一种可生物降解的聚合物传递平台,以改善外泌体在聚乳酸-共-羟基乙酸(PLGA)和聚乙二醇(PEG)三嵌段共聚物微球上的包封和可控释放。我们的传递平台整合到三维组织工程支架中,以便于将其直接插入小鼠颅顶骨缺损中。我们在体外和体内证明了这些功能构建体的成骨潜力。成骨 hDPSC 衍生外泌体的控制释放促进了 BMSC 的成骨分化,导致矿化程度可与外源性给予人源和鼠源 BMSC 相同的外泌体相媲美。通过将内源性细胞募集到缺陷部位并促进其分化,组织工程支架中成骨外泌体的控制释放在 8 周时在体内显示出加速的骨愈合。外泌体再现了间充质干细胞/祖细胞的有利特性,而没有与移植外源性细胞相关的制造或免疫原性问题。这种生物材料平台以有效且与临床相关的方式实现了外泌体介导的骨再生。