Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Nano Systems Institute, Seoul National University, Seoul, 08826, Republic of Korea.
Nat Commun. 2020 Oct 16;11(1):5230. doi: 10.1038/s41467-020-19133-w.
High-valent metal-oxo moieties have been implicated as key intermediates preceding various oxidation processes. The critical O-O bond formation step in the Kok cycle that is presumed to generate molecular oxygen occurs through the high-valent Mn-oxo species of the water oxidation complex, i.e., the MnCa cluster in photosystem II. Here, we report the spectroscopic characterization of new intermediates during the water oxidation reaction of manganese-based heterogeneous catalysts and assign them as low-spin Mn(IV)-oxo species. Recently, the effects of the spin state in transition metal catalysts on catalytic reactivity have been intensely studied; however, no detailed characterization of a low-spin Mn(IV)-oxo intermediate species currently exists. We demonstrate that a low-spin configuration of Mn(IV), S = 1/2, is stably present in a heterogeneous electrocatalyst of Ni-doped monodisperse 10-nm MnO nanoparticles via oxo-ligand field engineering. An unprecedented signal (g = 1.83) is found to evolve in the electron paramagnetic resonance spectrum during the stepwise transition from the Jahn-Teller-distorted Mn(III). In-situ Raman analysis directly provides the evidence for Mn(IV)-oxo species as the active intermediate species. Computational analysis confirmed that the substituted nickel species induces the formation of a z-axis-compressed octahedral C crystal field that stabilizes the low-spin Mn(IV)-oxo intermediates.
高价金属-氧基团被认为是各种氧化过程之前的关键中间体。Kok 循环中假定生成分子氧的关键 O-O 键形成步骤是通过水氧化复合物中的高价 Mn-氧物种发生的,即光合作用系统 II 中的 MnCa 簇。在这里,我们报告了锰基多相催化剂水氧化反应过程中新型中间体的光谱表征,并将其鉴定为低自旋 Mn(IV)-氧物种。最近,自旋态对过渡金属催化剂催化活性的影响受到了深入研究;然而,目前还没有关于低自旋 Mn(IV)-氧中间物种的详细特征。我们证明,通过氧配体场工程,Ni 掺杂的单分散 10nm MnO 纳米粒子的多相电催化剂中稳定存在低自旋 Mn(IV),S=1/2。在 Jahn-Teller 扭曲的 Mn(III)逐步转变过程中,电子顺磁共振光谱中发现了一个前所未有的信号(g=1.83)。原位拉曼分析直接为 Mn(IV)-氧物种作为活性中间物种提供了证据。计算分析证实,取代的镍物种诱导形成了一个 z 轴压缩的八面体 C 晶场,稳定了低自旋 Mn(IV)-氧中间体。